Azure Machine Learning Studio 中的機器學習模組 (傳統)

機器學習的一般工作流程包含許多階段:

  • 識別要解決的問題和測量結果的度量。

  • 尋找、清除和準備適當的資料。

  • 找出最佳功能和工程新功能。

  • 建立、評估和調整模型。

  • 使用模型來產生預測、建議和其他結果。

本節中的模組提供適用于機器學習的最後階段的工具,您可以在其中將演算法套用至資料,以將模型定型。 在這些最後的階段中,您也會產生分數,然後評估模型的精確度和實用性。

注意

適用于 : Machine Learning Studio (傳統)

此內容僅適用于 Studio (傳統) 。 Azure Machine Learning 設計工具中已新增類似的拖放模組。 若要深入瞭解 這兩個版本,請參閱這篇文章

依類別列出的機器學習工作清單

  • 初始化模型

    從各種可自訂的機器學習演算法中進行選擇 ,包括叢集回歸分類異常偵測 模型。

  • 訓練

    將您的資料提供給設定的模型,以便從模式中學習,以及建立可用於預測的統計資料。

  • 分數

    使用定型的模型來建立預測。

  • 評估

    測量定型模型的精確度,或比較多個模型。

如需此實驗性工作流程的詳細說明,請參閱 信用風險解決方案逐步解說。

必要條件

在您可以開始建立模型的有趣部分之前,通常需要進行許多準備工作。 本節提供 Machine Learning Studio (傳統) 中的工具連結,可協助您清理資料、改善輸入品質,以及防止執行階段錯誤。

資料探索和資料品質

確定您的資料是正確的資料類型、正確的數量,以及您所選擇之演算法的正確品質。 瞭解您擁有的資料量,以及散發的方式。 是否有極端值? 這些產生的結果為何,以及它們的意義為何? 是否有任何重複的記錄?

處理遺漏值

遺漏值可能對您的結果造成許多影響。 例如,幾乎所有的統計方法都捨棄遺漏值的案例。 根據預設,機器學習在遇到具有遺漏值的資料列時,會遵循這些規則:

  • 如果用來培訓模型的資料有遺漏值,則略過任何有遺漏值的資料列。

  • 如果在對模型評分時當做輸入使用的資料有遺漏值,則會使用遺漏值做為輸入,但會傳播 null。 這通常表示在結果中插入 null,而不是有效的預測。

在訓練模型之前,請務必檢查您的資料。 若要插補遺漏值或更正您的資料,請使用此模組:

選取功能並減少維度

Machine Learning Studio (傳統) 可協助您在資料中進行流覽,以找出最有用的屬性。

選擇適當的演算法

您嘗試解決的問題將決定選擇用於分析的資料,以及演算法的選擇。

如需詳細資訊,請參閱 如何在 Azure Machine Learning 中選擇演算法

範例

如需機器學習服務的範例,請參閱 AZURE AI 資源庫

如需秘訣和一些一般資料 prepration 工作的逐步解說,請參閱 執行 Team Data 科學流程的逐步解說。

另請參閱