ModelOperationsCatalog.Load Method

Definition

Overloads

Load(Stream, DataViewSchema)

Load the model and its input schema from a stream.

Load(String, DataViewSchema)

Load the model and its input schema from a file.

Load(Stream, DataViewSchema)

Load the model and its input schema from a stream.

public Microsoft.ML.ITransformer Load (System.IO.Stream stream, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : System.IO.Stream *  -> Microsoft.ML.ITransformer

Parameters

stream
Stream

A readable, seekable stream to load from.

inputSchema
DataViewSchema

Will contain the input schema for the model. If the model was saved without any description of the input, there will be no input schema. In this case this can be null.

Returns

The loaded model.

Examples

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModel
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            using (var file = File.OpenRead("model.zip"))
                model = mlContext.Model.Load(file, out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

Load(String, DataViewSchema)

Load the model and its input schema from a file.

public Microsoft.ML.ITransformer Load (string filePath, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : string *  -> Microsoft.ML.ITransformer
Public Function Load (filePath As String, ByRef inputSchema As DataViewSchema) As ITransformer

Parameters

filePath
String

Path to a file where the model should be read from.

inputSchema
DataViewSchema

Will contain the input schema for the model. If the model was saved without any description of the input, there will be no input schema. In this case this can be null.

Returns

The loaded model.

Examples

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModelFile
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            model = mlContext.Model.Load("model.zip", out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

Applies to