
	
		Skip to main content

		

		
			
				This browser is no longer supported.

				Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

				
					
Download Microsoft Edge					
					
More info about Internet Explorer and Microsoft Edge					
				

			

		

		

		
		
			

			

			

		

			
				
					
						
						
Table of contents						
					
					
						
						Exit focus mode
					
				

			

		
			
		

	

	

		

			
				
			

			
			
				
				

					

						
							
							
								
									
										
											
												
											
										
										

										

									

									

									
											
												
													Language
													
														
													
												
												
														
															
														
	
															
														
	
															
														
	
															
														

												

											

										
											
												
											
											Read in English
										

											
												
													
												
												Save
											
										

											
												
													
												
											
										

										
										
											
												
													
												
											
											
													
														
															
														
															Table of contents
													

												
													
														
													
													Read in English
												

													
														
															
														
														Save
													

													
														
															
														
														Edit
													

													
														
															
														
														Print
													

													

													
														
															
																
															
															Twitter
														
														
															
																
															
															LinkedIn
														
														
															
																
															
															Facebook
														
														
															
																
															
															Email
														
												
											

										
										
									

								

							

							

							
								
									
										
									
										Table of contents
								
							

							

							

								

								
									

Exception.GetBaseException Method

		Reference

	
		
			
		
		Feedback
	

Definition

			Namespace:
	
				 System
			

			Assembly:
	System.Runtime.dll

			Assembly:
	mscorlib.dll

			Assembly:
	netstandard.dll

		Source:
	Exception.cs

		Source:
	Exception.cs

		Source:
	Exception.cs

 Important

 Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.

	
		
			When overridden in a derived class, returns the Exception that is the root cause of one or more subsequent exceptions.

		

	

	public:
 virtual Exception ^ GetBaseException();

	public virtual Exception GetBaseException ();

	abstract member GetBaseException : unit -> Exception
override this.GetBaseException : unit -> Exception

	Public Overridable Function GetBaseException () As Exception

	Returns

	
		Exception
		
	

	The first exception thrown in a chain of exceptions. If the InnerException property of the current exception is a null reference (Nothing in Visual Basic), this property returns the current exception.

	Implements

	
		
					
						GetBaseException()
					
		

	

	Examples

	The following code example defines two derived Exception classes. It forces an exception and then throws it again with each of the derived classes. The code shows the use of the GetBaseException method to retrieve the original exception.

// Example for the Exception::GetBaseException method.
using namespace System;

namespace NDP_UE_CPP
{

 // Define two derived exceptions to demonstrate nested exceptions.
 ref class SecondLevelException: public Exception
 {
 public:
 SecondLevelException(String^ message, Exception^ inner)
 : Exception(message, inner)
 {}

 };

 ref class ThirdLevelException: public Exception
 {
 public:
 ThirdLevelException(String^ message, Exception^ inner)
 : Exception(message, inner)
 {}

 };

 // DivideBy0 forces a division by 0 and throws a second exception.
 void DivideBy0()
 {
 try
 {
 int zero = 0;
 int ecks = 1 / zero;
 }
 catch (Exception^ ex)
 {
 throw gcnew SecondLevelException("Forced a division by 0 and threw "
 "a second exception.",ex);
 }

 }

 // This function catches the exception from the called function
 // DivideBy0() and throws another in response.
 void Rethrow()
 {
 try
 {
 DivideBy0();
 }
 catch (Exception^ ex)
 {
 throw gcnew ThirdLevelException("Caught the second exception and "
 "threw a third in response.",ex);
 }

 }

}

int main()
{
 Console::WriteLine("This example of Exception.GetBaseException "
 "generates the following output.");
 Console::WriteLine("\nThe program forces a division by 0, "
 "then throws the exception \ntwice more, "
 "using a different derived exception each time.\n");
 try
 {

 // This function calls another that forces a division by 0.
 NDP_UE_CPP::Rethrow();
 }
 catch (Exception^ e)
 {
 Exception^ current;
 Console::WriteLine("Unwind the nested exceptions using "
 "the InnerException property:\n");

 // This code unwinds the nested exceptions using the
 // InnerException property.
 current = e;
 while (current != (Object^)0)
 {
 Console::WriteLine(current->ToString());
 Console::WriteLine();
 current = current->InnerException;
 }

 // Display the innermost exception.
 Console::WriteLine("Display the base exception using the \n"
 "GetBaseException method:\n");
 Console::WriteLine(e->GetBaseException()->ToString());
 }

}

/*
This example of Exception.GetBaseException generates the following output.

The program forces a division by 0, then throws the exception
twice more, using a different derived exception each time.

Unwind the nested exceptions using the InnerException property:

NDP_UE_CPP.ThirdLevelException: Caught the second exception and threw a third i
n response. ---> NDP_UE_CPP.SecondLevelException: Forced a division by 0 and th
rew a second exception. ---> System.DivideByZeroException: Attempted to divide
by zero.
 at NDP_UE_CPP.DivideBy0()
 --- End of inner exception stack trace ---
 at NDP_UE_CPP.DivideBy0()
 at NDP_UE_CPP.Rethrow()
 --- End of inner exception stack trace ---
 at NDP_UE_CPP.Rethrow()
 at main()

NDP_UE_CPP.SecondLevelException: Forced a division by 0 and threw a second exce
ption. ---> System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CPP.DivideBy0()
 --- End of inner exception stack trace ---
 at NDP_UE_CPP.DivideBy0()
 at NDP_UE_CPP.Rethrow()

System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CPP.DivideBy0()

Display the base exception using the
GetBaseException method:

System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CPP.DivideBy0()
*/

// Example for the Exception.GetBaseException method.
using System;

namespace NDP_UE_CS
{
 // Define two derived exceptions to demonstrate nested exceptions.
 class SecondLevelException : Exception
 {
 public SecondLevelException(string message, Exception inner)
 : base(message, inner)
 { }
 }
 class ThirdLevelException : Exception
 {
 public ThirdLevelException(string message, Exception inner)
 : base(message, inner)
 { }
 }

 class NestedExceptions
 {
 public static void Main()
 {
 Console.WriteLine(
 "This example of Exception.GetBaseException " +
 "generates the following output.");
 Console.WriteLine(
 "\nThe program forces a division by 0, then " +
 "throws the exception \ntwice more, " +
 "using a different derived exception each time.\n");

 try
 {
 // This function calls another that forces a
 // division by 0.
 Rethrow();
 }
 catch(Exception ex)
 {
 Exception current;

 Console.WriteLine(
 "Unwind the nested exceptions " +
 "using the InnerException property:\n");

 // This code unwinds the nested exceptions using the
 // InnerException property.
 current = ex;
 while(current != null)
 {
 Console.WriteLine(current.ToString());
 Console.WriteLine();
 current = current.InnerException;
 }

 // Display the innermost exception.
 Console.WriteLine(
 "Display the base exception " +
 "using the GetBaseException method:\n");
 Console.WriteLine(
 ex.GetBaseException().ToString());
 }
 }

 // This function catches the exception from the called
 // function DivideBy0() and throws another in response.
 static void Rethrow()
 {
 try
 {
 DivideBy0();
 }
 catch(Exception ex)
 {
 throw new ThirdLevelException(
 "Caught the second exception and " +
 "threw a third in response.", ex);
 }
 }

 // This function forces a division by 0 and throws a second
 // exception.
 static void DivideBy0()
 {
 try
 {
 int zero = 0;
 int ecks = 1 / zero;
 }
 catch(Exception ex)
 {
 throw new SecondLevelException(
 "Forced a division by 0 and threw " +
 "a second exception.", ex);
 }
 }
 }
}

/*
This example of Exception.GetBaseException generates the following output.

The program forces a division by 0, then throws the exception
twice more, using a different derived exception each time.

Unwind the nested exceptions using the InnerException property:

NDP_UE_CS.ThirdLevelException: Caught the second exception and threw a third in
 response. ---> NDP_UE_CS.SecondLevelException: Forced a division by 0 and thre
w a second exception. ---> System.DivideByZeroException: Attempted to divide by
 zero.
 at NDP_UE_CS.NestedExceptions.DivideBy0()
 --- End of inner exception stack trace ---
 at NDP_UE_CS.NestedExceptions.DivideBy0()
 at NDP_UE_CS.NestedExceptions.Rethrow()
 --- End of inner exception stack trace ---
 at NDP_UE_CS.NestedExceptions.Rethrow()
 at NDP_UE_CS.NestedExceptions.Main()

NDP_UE_CS.SecondLevelException: Forced a division by 0 and threw a second excep
tion. ---> System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CS.NestedExceptions.DivideBy0()
 --- End of inner exception stack trace ---
 at NDP_UE_CS.NestedExceptions.DivideBy0()
 at NDP_UE_CS.NestedExceptions.Rethrow()

System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CS.NestedExceptions.DivideBy0()

Display the base exception using the GetBaseException method:

System.DivideByZeroException: Attempted to divide by zero.
 at NDP_UE_CS.NestedExceptions.DivideBy0()
*/

// Example for the Exception.GetBaseException method.
open System

// Define two derived exceptions to demonstrate nested exceptions.
type SecondLevelException(message, inner: Exception) =
 inherit Exception(message, inner)

type ThirdLevelException(message, inner: Exception) =
 inherit Exception(message, inner)

printfn
 """This example of Exception.GetBaseException generates the following output.

The program forces a division by 0, then throws the exception
twice more, using a different derived exception each time.
"""

// This function forces a division by 0 and throws a second exception.
let divideBy0 () =
 try
 let zero = 0
 let ecks = 1 / zero
 ()
 with ex ->
 raise (SecondLevelException("Forced a division by 0 and threw a second exception.", ex))

// This function catches the exception from the called
// function divideBy0() and throws another in response.
let rethrow () =
 try
 divideBy0 ()
 with ex ->
 raise (ThirdLevelException("Caught the second exception and threw a third in response.", ex))

try
 // This function calls another that forces a
 // division by 0.
 rethrow ()
with ex ->
 printfn "Unwind the nested exceptions using the InnerException property:\n"

 // This code unwinds the nested exceptions using the
 // InnerException property.
 let mutable current = ex
 while current <> null do
 printfn $"{current}\n"
 current <- current.InnerException

 // Display the innermost exception.
 printfn "Display the base exception using the GetBaseException method:\n"
 printfn $"{ex.GetBaseException()}"

// This example of Exception.GetBaseException generates the following output.
//
// The program forces a division by 0, then throws the exception
// twice more, using a different derived exception each time.
//
// Unwind the nested exceptions using the InnerException property:
//
// NDP_UE_FS+ThirdLevelException: Caught the second exception and threw a third in
// response. ---> NDP_UE_FS.SecondLevelException: Forced a division by 0 and thre
// w a second exception. ---> System.DivideByZeroException: Attempted to divide by
// zero.
// at NDP_UE_FS.divideBy0()
// --- End of inner exception stack trace ---
// at NDP_UE_FS.divideBy0()
// at NDP_UE_FS.rethrow()
// --- End of inner exception stack trace ---
// at NDP_UE_FS.rethrow()
// at<StartupCode$fs>.$NDP_UE_FS.main@()
//
// NDP_UE_FS.SecondLevelException: Forced a division by 0 and threw a second excep
// tion. ---> System.DivideByZeroException: Attempted to divide by zero.
// at NDP_UE_FS.divideBy0()
// --- End of inner exception stack trace ---
// at NDP_UE_FS.divideBy0()
// at NDP_UE_FS.rethrow()
//
// System.DivideByZeroException: Attempted to divide by zero.
// at NDP_UE_FS.divideBy0()
//
// Display the base exception using the GetBaseException method:
//
// System.DivideByZeroException: Attempted to divide by zero.
// at NDP_UE_FS.divideBy0()

' Example for the Exception.GetBaseException method.
Namespace NDP_UE_VB

 ' Define two derived exceptions to demonstrate nested exceptions.
 Class SecondLevelException
 Inherits Exception

 Public Sub New(message As String, inner As Exception)
 MyBase.New(message, inner)
 End Sub
 End Class

 Class ThirdLevelException
 Inherits Exception

 Public Sub New(message As String, inner As Exception)
 MyBase.New(message, inner)
 End Sub
 End Class

 Class NestedExceptions

 Public Shared Sub Main()
 Console.WriteLine(_
 "This example of Exception.GetBaseException " & _
 "generates the following output.")
 Console.WriteLine(vbCrLf & _
 "The program forces a division by 0, then throws " & _
 "the exception " & vbCrLf & "twice more, using " & _
 "a different derived exception each time:" & vbCrLf)

 Try
 ' This sub calls another that forces a division by 0.
 Rethrow()

 Catch ex As Exception
 Dim current As Exception

 Console.WriteLine(_
 "Unwind the nested exceptions using the " & _
 "InnerException property:" & vbCrLf)

 ' This code unwinds the nested exceptions using the
 ' InnerException property.
 current = ex
 While Not (current Is Nothing)
 Console.WriteLine(current.ToString())
 Console.WriteLine()
 current = current.InnerException
 End While

 ' Display the innermost exception.
 Console.WriteLine(_
 "Display the base exception using the " & _
 "GetBaseException method:" & vbCrLf)
 Console.WriteLine(_
 ex.GetBaseException().ToString())
 End Try
 End Sub

 ' This sub catches the exception from the called sub
 ' DivideBy0() and throws another in response.
 Shared Sub Rethrow()
 Try
 DivideBy0()

 Catch ex As Exception
 Throw New ThirdLevelException(_
 "Caught the second exception and " & _
 "threw a third in response.", ex)
 End Try
 End Sub

 ' This sub forces a division by 0 and throws a second
 ' exception.
 Shared Sub DivideBy0()
 Try
 Dim zero As Integer = 0
 Dim ecks As Integer = 1 \ zero

 Catch ex As Exception
 Throw New SecondLevelException(_
 "Forced a division by 0 and threw " & _
 "a second exception.", ex)
 End Try
 End Sub
 End Class
End Namespace ' NDP_UE_VB

' This example of Exception.GetBaseException generates the following output.
'
' The program forces a division by 0, then throws the exception
' twice more, using a different derived exception each time:
'
' Unwind the nested exceptions using the InnerException property:
'
' NDP_UE_VB.ThirdLevelException: Caught the second exception and threw a third
' in response. ---> NDP_UE_VB.SecondLevelException: Forced a division by 0 and
' threw a second exception. ---> System.DivideByZeroException: Attempted to div
' ide by zero.
' at NDP_UE_VB.NestedExceptions.DivideBy0()
' --- End of inner exception stack trace ---
' at NDP_UE_VB.NestedExceptions.DivideBy0()
' at NDP_UE_VB.NestedExceptions.Rethrow()
' --- End of inner exception stack trace ---
' at NDP_UE_VB.NestedExceptions.Rethrow()
' at NDP_UE_VB.NestedExceptions.Main()
'
' NDP_UE_VB.SecondLevelException: Forced a division by 0 and threw a second exc
' eption. ---> System.DivideByZeroException: Attempted to divide by zero.
' at NDP_UE_VB.NestedExceptions.DivideBy0()
' --- End of inner exception stack trace ---
' at NDP_UE_VB.NestedExceptions.DivideBy0()
' at NDP_UE_VB.NestedExceptions.Rethrow()
'
' System.DivideByZeroException: Attempted to divide by zero.
' at NDP_UE_VB.NestedExceptions.DivideBy0()
'
' Display the base exception using the GetBaseException method:
'
' System.DivideByZeroException: Attempted to divide by zero.
' at NDP_UE_VB.NestedExceptions.DivideBy0()

	Remarks

	A chain of exceptions consists of a set of exceptions such that each exception in the chain was thrown as a direct result of the exception referenced in its InnerException property. For a given chain, there can be exactly one exception that is the root cause of all other exceptions in the chain. This exception is called the base exception and its InnerException property always contains a null reference.

For all exceptions in a chain of exceptions, the GetBaseException method must return the same object (the base exception).

Use the GetBaseException method when you want to find the root cause of an exception but do not need information about exceptions that may have occurred between the current exception and the first exception.

		Notes to Inheritors

		The GetBaseException method is overridden in classes that require control over the exception content or format.

	 Applies to

	

							

							

							

							

						

						
						

						

	
		
			
				
					
						
					
					Collaborate with us on GitHub					
				

				
					The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
				
			

		

		
			
				
					
						[image:]
						[image:]
					

					

				
				
					.NET

					
						

						
							
								
									
								
								Open a documentation issue
							
							
								
									
								
								Provide product feedback
							
						

					

				

			

		

	

 Feedback

		
			
				
			
			Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback.		

 Submit and view feedback for

 This product

			
				
					
				
				This page
			

 View all page feedback

						

						
						

						

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

						

					

						
							
								Additional resources

								
								
								
								
									In this article

								
								
							

						

				
				

			
			

			
			
			
			
		

	
	

	

	
	
			
					
						
					
					
		

	
		

Your Privacy Choices

		
		

	
		
			
		
		Theme
		
			
		
	
	
			
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Light					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
Dark					
				
			
	
				
					
						
							
								
								
								
								
								
								
								
								
							
						
					
					
High contrast					
				
			

	

		

	
		
	Previous Versions
	Blog
	Contribute
	Privacy
	Terms of Use
	Trademarks
	© Microsoft 2024

	

	

