Peer-to-Peer Networking Scenarios

Peer-to-peer networking enables or enhances the following scenarios:

Real-Time Communications (RTC)

  • Serverless Instant Messaging

RTC exists today. Computer users can chat and have voice or video conversations with their peers today. However, many of the existing programs and their communications protocols rely on servers to function. If you are participating in an ad-hoc wireless network or are a part of an isolated network, you are unable to use these RTC facilities. Peer-to-peer technology allows the extension of RTC technologies to these additional networking environments.

  • Real-time matchmaking and gameplay

Similar to RTC, real-time game play exists today. There are many Web-based game sites that cater to the gaming community via the Internet. They offer the ability to find other gamers with similar interests and play a game together. The problem is that the game sites exist only on the Internet and are geared toward the avid gamer who wants to play against the best gamers in the world. These sites track and provide the statistics to help in the process. However, these sites do not allow a gamer to set up an ad-hoc game among friends in a variety of networking environments. Peer-to-peer networking can provide this capability.


  • Project workspaces solving a goal

Shared workspace applications allow for the creation of ad-hoc workgroups and then allow the workgroup owners to populate the shared workspace with the tools and content that will allow the group to solve a problem. This could include message boards, productivity tools, and files.

  • Sharing files with others

A subset of project workspace sharing is the ability to share files. Although this ability exists today with the current version of Windows, it can be enhanced through peer-to-peer networking to make file content available in an easy and friendly way. Allowing easy access to the incredible wealth of content at the edge of the Internet or in ad-hoc computing environments increases the value of network computing.

  • Sharing experiences

With wireless connectivity becoming more prevalent, peer-to-peer networking allows you to be online in a group of peers and to be able to share your experiences (such as a sunset, a rock concert, or a vacation cruise) while they are occurring.

Content Distribution

  • Text messages

Peer-to-peer networking can allow for the dissemination of text-based information in the form of files or messages to a large group of users. An example is a news list.


  • Audio and video

Peer-to-peer networking can also allow for the dissemination of audio or video information to a large group of users, such as a large concert or company meeting. To distribute the content today, you must configure high-capacity servers to collect and distribute the load to hundreds or thousands of users. With peer-to-peer networking, only a handful of peers would actually get their content from the centralized servers. These peers would flood this information out to a few more people who send it to others, and so on. The load of distributing the content is distributed to the peers in the cloud. A peer that wants to receive the content would find the closest distributing peer and get the content from them.


  • Distribution of product updates

Peer-to-peer networking can also provide an efficient mechanism to distribute software such as product updates (security updates and service packs). A peer that has a connection to a software distribution server can obtain the product update and propagate it to the other members of its group.


Distributed Processing

  • Division and distribution of a task

A large computing task can first be divided into separate smaller computing tasks well suited to the computing resources of a peer. A peer could do the dividing of the large computing task. Then, peer-to-peer networking can distribute the individual tasks to the separate peers in the group. Each peer performs its computing task and reports its result back to a centralized accumulation point.

  • Aggregation of computer resources

Another way to utilize peer-to-peer networking for distributed processing is to run programs on each peer that run during idle processor times and are part of a larger computing task that is coordinated by a central server. By aggregating the processors of multiple computers, peer-to-peer networking can turn a group of peer computers into a large parallel processor for large computing tasks.


See Also