RevoScaleR (R library in SQL Server)

APPLIES TO: yesSQL Server (Windows only) noAzure SQL Database noAzure SQL Data Warehouse noParallel Data Warehouse

RevoScaleR is a library of high-performance data science functions from Microsoft. Functions support data import, data transformation, summarization, visualization, and analysis.

In contrast with base R functions, RevoScaleR operations can be performed against very large datasets, in parallel, and on distributed file systems. Functions can operate over datasets that do not fit in memory by using chunking and by reassembling results when operations are complete.

RevoScaleR functions are denoted with an rx or Rx prefix to make them easy to identify.

RevoScaleR serves as a platform for distributed data science. For example, you can use the RevoScaleR compute contexts and transformations with the state-of-the-art algorithms in MicrosoftML. You can also use rxExec to run base R functions in parallel.

Full reference documentation

The RevoScaleR library is distributed in multiple Microsoft products, but usage is the same whether you get the library in SQL Server or another product. Because the functions are the same, documentation for individual RevoScaleR functions is published to just one location under the R reference for Microsoft Machine Learning Server. Should any product-specific behaviors exist, discrepancies will be noted in the function help page.

Versions and platforms

The RevoScaleR library is based on R 3.4.3 and available only when you install one of the following Microsoft products or downloads:

Note

Full product release versions are Windows-only, starting with SQL Server 2017. Linux support for RevoScaleR is new in SQL Server 2019 Preview.

Functions by category

This section lists the functions by category to give you an idea of how each one is used. You can also use the table of contents to find functions in alphabetical order.

1-Data source and compute

RevoScaleR includes functions for creating data sources and setting the location, or compute context, of where computations are performed. A data source object is a container that specifies a connection string together with the set of data that you want, defined either as a table, view, or query. Stored procedure calls are not supported. Functions relevant to SQL Server scenarios are listed in the table below.

SQL Server and R use different data types in some cases. For a list of mappings between SQL and R data types, see R-to-SQL data types.

Function Description
RxInSqlServer Create a SQL Server compute context object to push computations to a remote instance. Several RevoScaleR functions take compute context as an argument.
rxGetComputeContext / rxSetComputeContext Get or set the active compute context.
RxSqlServerData Create a data object based on a SQL Server query or table.
RxOdbcData Create a data source based on an ODBC connection.
RxXdfData Create a data source based on a local XDF file. XDF files are often used to offload in-memory data to disk. An XDF file can be useful when working with more data than can be transferred from the database in one batch, or more data than can fit in memory. For example, if you regularly move large amounts of data from a database to a local workstation, rather than query the database repeatedly for each R operation, you can use the XDF file as a kind of cache to save the data locally and then work with it in your R workspace.

Tip

If you are new to the idea of data sources or compute contexts, we recommend that you start with distributed computing in the Microsoft Machine Learning Server documentation.

Perform DDL statements

You can execute DDL statements from R, if you have the necessary permissions on the instance and database. The following functions use ODBC calls to execute DDL statements or retrieve the database schema.

Function Description
rxSqlServerTableExists and rxSqlServerDropTable Drop a SQL Server table, or check for the existence of a database table or object.
rxExecuteSQLDDL Execute a Data Definition Language (DDL) command that defines or manipulates database objects. This function cannot return data, and is used only to retrieve or modify the object schema or metadata.

2-Data manipulation (ETL)

After you have created a data source object, you can use the object to load data into it, transform data, or write new data to the specified destination. Depending on the size of the data in the source, you can also define the batch size as part of the data source and move data in chunks.

Function Description
rxOpen-methods Check whether a data source is available, open or close a data source, read data from a source, write data to the target, and close a data source.
rxImport Move data from a data source into file storage or into a data frame.
rxDataStep Transform data while moving it between data sources.

3-Graphing functions

Function name Description
rxHistogram Creates a histogram from data.
rxLinePlot Creates a line plot from data.
rxLorenz Computes a Lorenz curve which can be plotted.
rxRocCurve Computes and plots ROC curves from actual and predicted data.

4-Descriptive statistics

Function name Description
rxQuantile * Computes approximate quantiles for .xdf files and data frames without sorting.
rxSummary * Basic summary statistics of data, including computations by group. Writing by group computations to .xdf file not supported.
rxCrossTabs * Formula-based cross-tabulation of data.
rxCube * Alternative formula-based cross-tabulation designed for efficient representation returning cube results. Writing output to .xdf file not supported.
rxMarginals Marginal summaries of cross-tabulations.
as.xtabs Converts cross tabulation results to an xtabs object.
rxChiSquaredTest Performs Chi-squared Test on xtabs object. Used with small data sets and does not chunk data.
rxFisherTest Performs Fisher's Exact Test on xtabs object. Used with small data sets and does not chunk data.
rxKendallCor Computes Kendall's Tau Rank Correlation Coefficient using xtabs object.
rxPairwiseCrossTab Apply a function to pairwise combinations of rows and columns of an xtabs object.
rxRiskRatio Calculate the relative risk on a two-by-two xtabs object.
rxOddsRatio Calculate the odds ratio on a two-by-two xtabs object.

* Signifies the most popular functions in this category.

5-Prediction functions

Function name Description
rxLinMod * Fits a linear model to data.
rxLogit * Fits a logistic regression model to data.
rxGlm * Fits a generalized linear model to data.
rxCovCor * Calculate the covariance, correlation, or sum of squares / cross-product matrix for a set of variables.
rxDTree * Fits a classification or regression tree to data.
rxBTrees * Fits a classification or regression decision forest to data using a stochastic gradient boosting algorithm.
rxDForest * Fits a classification or regression decision forest to data.
rxPredict * Calculates predictions for fitted models. Output must be an XDF data source.
rxKmeans * Performs k-means clustering.
rxNaiveBayes * Performs Naive Bayes classification.
rxCov Calculate the covariance matrix for a set of variables.
rxCor Calculate the correlation matrix for a set of variables.
rxSSCP Calculate the sum of squares / cross-product matrix for a set of variables.
rxRoc Receiver Operating Characteristic (ROC) computations using actual and predicted values from binary classifier system.

* Signifies the most popular functions in this category.

How to work with RevoScaleR

Functions in RevoScaleR are callable in R code encapsulated in stored procedures. Most developers build RevoScaleR solutions locally, and then migrate finished R code to stored procedures as a deployment exercise.

When running locally, you typically run an R script from the command line, or from an R development environment, and specify a SQL Server compute context using one of the RevoScaleR functions. You can use the remote compute context for the entire code, or for individual functions. For example, you might want to offload model training to the server to use the latest data and avoid data movement.

When you are ready to encapsulate R script inside a stored procedure, sp_execute_external_script, we recommend rewriting the code as a single function that has clearly defined inputs and outputs.

See also