Troubleshoot a Full Transaction Log (SQL Server Error 9002)

Applies to: yesSQL Server (all supported versions)

Option 1: Run the steps directly in an executable notebook via Azure Data Studio

Note

Before attempting to open this notebook, check that Azure Data Studio is installed on your local machine. To install, go to Learn how to install Azure Data Studio.

Option 2: Follow the step manually

This topic discusses possible responses to a full transaction log and suggests how to avoid it in the future.

When the transaction log becomes full, SQL Server Database Engine issues a 9002 error. The log can fill when the database is online, or in recovery. If the log fills while the database is online, the database remains online but can only be read, not updated. If the log fills during recovery, the Database Engine marks the database as RESOURCE PENDING. In either case, user action is required to make log space available.

Note

This article is focused on SQL Server. For more specific information on this error in Azure SQL Database and Azure SQL Managed Instance, see Troubleshooting transaction log errors with Azure SQL Database and Azure SQL Managed Instance. Azure SQL Database and Azure SQL Managed Instance are based on the latest stable version of the Microsoft SQL Server database engine, so much of the content is similar though troubleshooting options and tools may differ.

Common reasons for a full transaction log

The appropriate response to a full transaction log depends on what conditions caused the log to fill. Common causes include:

  • Log not being truncated
  • Disk volume is full
  • Log size is set to a fixed maximum value or autogrow is disabled
  • Replication or availability group synchronization that is unable to complete

How to resolve a full transaction log

The following specific steps will help you find the reason for a full transaction log and resolve the issue.

1. Truncate the Log

A very common solution to this problem is to ensure transaction log backups are performed for your database which will ensure the log is truncated. If no recent transaction log history is indicated for the database with a full transaction log, the solution to the problem is straightforward: resume regular transaction log backups of the database.

Log truncation explained

There is a difference between truncating a transaction log and shrinking a transaction log. Log Truncation occurs normally during a transaction log backup, and is a logical operation which removes committed records inside the log, whereas log shrinking reclaims physical space on the file system by reducing the file size. Log truncation occurs on a virtual-log-file (VLF) boundary, and a log file may contain many VLFs. A log file can be shrunk only if there is empty space inside the log file to reclaim. Shrinking a log file alone cannot solve the problem of a full log file, instead, you must discover why the log file is full and cannot be truncated.

Warning

Data that is moved to shrink a file can be scattered to any available location in the file. This causes index fragmentation and might slow the performance of queries that search a range of the index. To eliminate the fragmentation, consider rebuilding the indexes on the file after shrinking. For more information, see Shrink a database.

What is preventing log truncation?

To discover what is preventing log truncation in a given case, use the log_reuse_wait and log_reuse_wait_desc columns of the sys.databases catalog view. For more information, see sys.databases (Transact-SQL). For descriptions of factors that can delay log truncation, see The Transaction Log (SQL Server).

The following set of T-SQL commands will help you identify if a database transaction log is not truncated and the reason for it. The following script will also recommend steps to resolve the issue:

SET NOCOUNT ON
DECLARE @SQL VARCHAR (8000), @log_reuse_wait tinyint, @log_reuse_wait_desc nvarchar(120), @dbname sysname, @database_id int, @recovery_model_desc varchar (24)


IF ( OBJECT_id (N'tempdb..#CannotTruncateLog_Db') is not null)
BEGIN
    DROP TABLE #CannotTruncateLog_Db
END


--get info about transaction logs in each db. Use a DMV which supports all supported versions

IF ( OBJECT_id (N'tempdb..#dm_db_log_space_usage') is not null)
BEGIN
    DROP TABLE #dm_db_log_space_usage 
END
SELECT * INTO #dm_db_log_space_usage FROM sys.dm_db_log_space_usage where 1=0

DECLARE log_space CURSOR FOR SELECT NAME FROM sys.databases
OPEN log_space 

FETCH NEXT FROM log_space into @dbname

WHILE @@FETCH_STATUS = 0
BEGIN

	set @SQL = '
	insert into #dm_db_log_space_usage (
	database_id, 
	total_log_size_in_bytes, 
	used_log_space_in_bytes, 
	used_log_space_in_percent, 
	log_space_in_bytes_since_last_backup
	)
	select
	database_id, 
	total_log_size_in_bytes, 
	used_log_space_in_bytes, 
	used_log_space_in_percent, 
	log_space_in_bytes_since_last_backup
	from ' + @dbname +'.sys.dm_db_log_space_usage'

	
	BEGIN TRY  
		exec (@SQL)
	END TRY  

	BEGIN CATCH  
        SELECT ERROR_MESSAGE() AS ErrorMessage;  
	END CATCH;

	FETCH NEXT FROM log_space into @dbname
END

CLOSE log_space 
DEALLOCATE log_space 

--select the affected databases 
SELECT 
    sdb.name as DbName, 
    sdb.log_reuse_wait, sdb.log_reuse_wait_desc, 
    log_reuse_wait_explanation = CASE

        WHEN log_reuse_wait = 1 THEN 'No checkpoint has occurred since the last log truncation, or the head of the log has not yet moved beyond'
        WHEN log_reuse_wait = 2 THEN 'A log backup is required before the transaction log can be truncated.'
        WHEN log_reuse_wait = 3 THEN 'A data backup or a restore is in progress (all recovery models). Please wait or cancel backup'
        WHEN log_reuse_wait = 4 THEN 'A long-running active transaction or a defferred transaction is keeping log from being truncated. You can attempt a log backup to free space or complete/rollback long transaction'
        WHEN log_reuse_wait = 5 THEN 'Database mirroring is paused, or under high-performance mode, the mirror database is significantly behind the principal database. (Full recovery model only)'        
        WHEN log_reuse_wait = 6 THEN 'During transactional replication, transactions relevant to the publications are still undelivered to the distribution database. Investigate the status of agents involved in replication or Changed Data Capture (CDC). (Full recovery model only.)'        

        WHEN log_reuse_wait = 7 THEN 'A database snapshot is being created. This is a routine, and typically brief, cause of delayed log truncation.'
        WHEN log_reuse_wait = 8 THEN 'A transaction log scan is occurring. This is a routine, and typically a brief cause of delayed log truncation.'
        WHEN log_reuse_wait = 9 THEN 'A secondary replica of an availability group is applying transaction log records of this database to a corresponding secondary database. (Full recovery model only.)'
        WHEN log_reuse_wait = 13 THEN 'If a database is configured to use indirect checkpoints, the oldest page on the database might be older than the checkpoint log sequence number (LSN).'
        WHEN log_reuse_wait = 16 THEN 'An In-Memory OLTP checkpoint has not occurred since the last log truncation, or the head of the log has not yet moved beyond a VLF.'
    ELSE 'None' END,

    sdb.database_id,
    sdb.recovery_model_desc,
    lsu.used_log_space_in_bytes/1024 as Used_log_size_MB,
	lsu.total_log_size_in_bytes /1024 as Total_log_size_MB,
    100 - lsu.used_log_space_in_percent as Percent_Free_Space
INTO #CannotTruncateLog_Db
FROM sys.databases AS sdb INNER JOIN #dm_db_log_space_usage lsu ON sdb.database_id = lsu.database_id
WHERE log_reuse_wait > 0

SELECT * FROM #CannotTruncateLog_Db 


DECLARE no_truncate_db CURSOR FOR
    SELECT log_reuse_wait, log_reuse_wait_desc, dbname, database_id, recovery_model_desc FROM #CannotTruncateLog_Db;


OPEN no_truncate_db

FETCH NEXT FROM no_truncate_db into @log_reuse_wait, @log_reuse_wait_desc, @dbname, @database_id, @recovery_model_desc

WHILE @@FETCH_STATUS = 0
BEGIN
    if (@log_reuse_wait > 0)
        select '-- ''' + @dbname +  ''' database has log_reuse_wait = ' + @log_reuse_wait_desc + ' --'  as 'Individual Database Report'


    if (@log_reuse_wait = 1)
    BEGIN
        select 'Consider running the checkpoint command to attempt resolving this issue or further t-shooting may be required on the checkpoint process. Also, examine the log for active VLFs at the end of file' as Recommendation
        select 'USE ''' + @dbname+ '''; CHECKPOINT' as CheckpointCommand
        select 'select * from sys.dm_db_log_info(' + CONVERT(varchar,@database_id)+ ')' as VLF_LogInfo
    END
    else if (@log_reuse_wait = 2)
    BEGIN
        select 'Is '+ @recovery_model_desc +' recovery model the intended choice for ''' + @dbname+ ''' database? Review recovery models and determine if you need to change it. https://docs.microsoft.com/sql/relational-databases/backup-restore/recovery-models-sql-server' as RecoveryModelChoice
        select 'To truncate the log consider performing a transaction log backup on database ''' + @dbname+ ''' which is in ' + @recovery_model_desc +' recovery model. Be mindful of any existing log backup chains that could be broken' as Recommendation
        select 'BACKUP LOG [' + @dbname + '] TO DISK = ''some_volume:\some_folder\' + @dbname + '_LOG.trn ''' as BackupLogCommand
    END
    else if (@log_reuse_wait = 3)
    BEGIN
        select 'Either wait for or cancel any active backups currently running for database ''' +@dbname+ '''. To check for backups, run this command:' as Recommendation
        select 'select * from sys.dm_exec_requests where command like ''backup%'' or command like ''restore%''' as FindBackupOrRestore
    END
    else if (@log_reuse_wait = 4)
    BEGIN
        select 'Active transactions currently running  for database ''' +@dbname+ '''. To check for active transactions, run these commands:' as Recommendation
        select 'DBCC OPENTRAN (''' +@dbname+ ''')' as FindOpenTran
        select 'select database_id, db_name(database_id) dbname, database_transaction_begin_time, database_transaction_state, database_transaction_log_record_count, database_transaction_log_bytes_used, database_transaction_begin_lsn, stran.session_id from sys.dm_tran_database_transactions dbtran left outer join sys.dm_tran_session_transactions stran on dbtran.transaction_id = stran.transaction_id where database_id = ' + CONVERT(varchar, @database_id) as FindOpenTransAndSession
    END

    else if (@log_reuse_wait = 5)
    BEGIN
        select 'Database Mirroring for database ''' +@dbname+ ''' is behind on synchronization. To check the state of DBM, run the commands below:' as Recommendation
        select 'select db_name(database_id), mirroring_state_desc, mirroring_role_desc, mirroring_safety_level_desc from sys.database_mirroring where mirroring_guid is not null and mirroring_state <> 4 and database_id = ' + convert(sysname, @database_id)  as CheckMirroringStatus
        
        select 'Database Mirroring for database ''' +@dbname+ ''' may be behind: check unsent_log, send_rate, unrestored_log, recovery_rate, average_delay in this output' as Recommendation
        select 'exec msdb.sys.sp_dbmmonitoraddmonitoring 1; exec msdb.sys.sp_dbmmonitorresults ''' + @dbname+ ''', 5, 0; waitfor delay ''00:01:01''; exec msdb.sys.sp_dbmmonitorresults ''' + @dbname+ '''; exec msdb.sys.sp_dbmmonitordropmonitoring'   as CheckMirroringStatusAnd
    END

    else if (@log_reuse_wait = 6)
    BEGIN
        select 'Replication transactions still undelivered from publisher database ''' +@dbname+ ''' to Distribution database. Check the oldest non-distributed replication transaction. Also check if the Log Reader Agent is running and if it has encoutered any errors' as Recommendation
        select 'DBCC OPENTRAN  (''' + @dbname + ''')' as CheckOldestNonDistributedTran
        select 'select top 5 * from distribution..MSlogreader_history where runstatus in (6, 5) or error_id <> 0 and agent_id = find_in_mslogreader_agents_table  order by time desc ' as LogReaderAgentState
    END
    
    else if (@log_reuse_wait = 9)
    BEGIN
        select 'Always On transactions still undelivered from primary database ''' +@dbname+ ''' to Secondary replicas. Check the Health of AG nodes and if there is latency is Log block movement to Secondaries' as Recommendation
        select 'select availability_group=cast(ag.name as varchar(30)), primary_replica=cast(ags.primary_replica as varchar(30)),primary_recovery_health_desc=cast(ags.primary_recovery_health_desc as varchar(30)), synchronization_health_desc=cast(ags.synchronization_health_desc as varchar(30)),ag.failure_condition_level, ag.health_check_timeout, automated_backup_preference_desc=cast(ag.automated_backup_preference_desc as varchar(10))  from sys.availability_groups ag join sys.dm_hadr_availability_group_states ags on ag.group_id=ags.group_id' as CheckAGHealth
        select 'SELECT  group_name=cast(arc.group_name as varchar(30)), replica_server_name=cast(arc.replica_server_name as varchar(30)), node_name=cast(arc.node_name as varchar(30)),role_desc=cast(ars.role_desc as varchar(30)), ar.availability_mode_Desc, operational_state_desc=cast(ars.operational_state_desc as varchar(30)), connected_state_desc=cast(ars.connected_state_desc as varchar(30)), recovery_health_desc=cast(ars.recovery_health_desc as varchar(30)), synhcronization_health_desc=cast(ars.synchronization_health_desc as varchar(30)), ars.last_connect_error_number, last_connect_error_description=cast(ars.last_connect_error_description as varchar(30)), ars.last_connect_error_timestamp, primary_role_allow_connections_desc=cast(ar.primary_role_allow_connections_desc as varchar(30)) from sys.dm_hadr_availability_replica_cluster_nodes arc join sys.dm_hadr_availability_replica_cluster_states arcs on arc.replica_server_name=arcs.replica_server_name join sys.dm_hadr_availability_replica_states ars on arcs.replica_id=ars.replica_id join sys.availability_replicas ar on ars.replica_id=ar.replica_id join sys.availability_groups ag on ag.group_id = arcs.group_id and ag.name = arc.group_name ORDER BY cast(arc.group_name as varchar(30)), cast(ars.role_desc as varchar(30))' as CheckReplicaHealth
        select 'select database_name=cast(drcs.database_name as varchar(30)), drs.database_id, drs.group_id, drs.replica_id, drs.is_local,drcs.is_failover_ready,drcs.is_pending_secondary_suspend, drcs.is_database_joined, drs.is_suspended, drs.is_commit_participant, suspend_reason_desc=cast(drs.suspend_reason_desc as varchar(30)), synchronization_state_desc=cast(drs.synchronization_state_desc as varchar(30)), synchronization_health_desc=cast(drs.synchronization_health_desc as varchar(30)), database_state_desc=cast(drs.database_state_desc as varchar(30)), drs.last_sent_lsn, drs.last_sent_time, drs.last_received_lsn, drs.last_received_time, drs.last_hardened_lsn, drs.last_hardened_time,drs.last_redone_lsn, drs.last_redone_time, drs.log_send_queue_size, drs.log_send_rate, drs.redo_queue_size, drs.redo_rate, drs.filestream_send_rate, drs.end_of_log_lsn, drs.last_commit_lsn, drs.last_commit_time, drs.low_water_mark_for_ghosts, drs.recovery_lsn, drs.truncation_lsn, pr.file_id, pr.error_type, pr.page_id, pr.page_status, pr.modification_time from sys.dm_hadr_database_replica_cluster_states drcs join sys.dm_hadr_database_replica_states drs on drcs.replica_id=drs.replica_id and drcs.group_database_id=drs.group_database_id left outer join sys.dm_hadr_auto_page_repair pr on drs.database_id=pr.database_id  order by drs.database_id' as LogMovementHealth
        select 'For more information see https://docs.microsoft.com/en-us/troubleshoot/sql/availability-groups/error-9002-transaction-log-large' as OnlineDOCResource
    END    
    else if (@log_reuse_wait in (10, 11, 12, 14))
    BEGIN
        select 'This state is not documented and is expected to be rare and short-lived' as Recommendation
    END    
    else if (@log_reuse_wait = 13)
    BEGIN
        select 'The oldest page on the database might be older than the checkpoint log sequence number (LSN). In this case, the oldest page can delay log truncation.' as Finding
        select 'This state should be short-lived, but if you find it is taking a long time, you can consider disabling Indirect Checkpoint temporarily' as Recommendation
        select 'ALTER DATABASE [' +@dbname+ '] SET TARGET_RECOVERY_TIME = 0' as DisableIndirectCheckpointTemporarily
    END    
    else if (@log_reuse_wait = 16)
    BEGIN
        select 'For memory-optimized tables, an automatic checkpoint is taken when transaction log file becomes bigger than 1.5 GB since the last checkpoint (includes both disk-based and memory-optimized tables)' as Finding
        select 'Review https://blogs.msdn.microsoft.com/sqlcat/2016/05/20/logging-and-checkpoint-process-for-memory-optimized-tables-2/' as ReviewBlog
        select 'use ' +@dbname+ ' CHECKPOINT' as RunCheckpoint
    END    

    FETCH NEXT FROM no_truncate_db into @log_reuse_wait, @log_reuse_wait_desc, @dbname, @database_id, @recovery_model_desc

END

CLOSE no_truncate_db
DEALLOCATE no_truncate_db

Important

If the database was in recovery when the 9002 error occurred, after resolving the problem, recover the database by using ALTER DATABASE database_name SET ONLINE.

LOG_BACKUP log_reuse_wait

The most common actions you can consider here is to review your database recovery model and backup the transaction log of your database.

Consider the database's recovery model

The transaction log may be failing to truncate with LOG_BACKUP log_reuse_wait category, because you have never backed it up. In many of those cases, your database is using FULL or BULK_LOGGED recovery model, but you did not back up transaction logs. You should consider each database recovery model carefully: perform transaction log backups on all databases in FULL or BULK LOGGED recovery models to minimize occurrences of error 9002. For more information, see Recovery Models.

Back up the log

Under the FULL or BULK_LOGGED recovery model, if the transaction log has not been backed up recently, backup might be what is preventing log truncation. You must back up the transaction log to allow log records to be released and the log truncated. If the log has never been backed up, you must create two log backups to permit the Database Engine to truncate the log to the point of the last backup. Truncating the log frees logical space for new log records. To keep the log from filling up again, take log backups regularly and more frequently. For more information, see Recovery Models.

A complete history of all SQL Server backup and restore operations on a server instance is stored in the msdb system database. To review the complete backup history of a database, use the following sample script:

SELECT bs.database_name
, backuptype = CASE 
	WHEN bs.type = 'D' and bs.is_copy_only = 0 THEN 'Full Database'
	WHEN bs.type = 'D' and bs.is_copy_only = 1 THEN 'Full Copy-Only Database'
	WHEN bs.type = 'I' THEN 'Differential database backup'
	WHEN bs.type = 'L' THEN 'Transaction Log'
	WHEN bs.type = 'F' THEN 'File or filegroup'
	WHEN bs.type = 'G' THEN 'Differential file'
	WHEN bs.type = 'P' THEN 'Partial'
	WHEN bs.type = 'Q' THEN 'Differential partial' END + ' Backup'
, bs.recovery_model
, BackupStartDate = bs.Backup_Start_Date
, BackupFinishDate = bs.Backup_Finish_Date
, LatestBackupLocation = bf.physical_device_name
, backup_size_mb = bs.backup_size/1024./1024.
, compressed_backup_size_mb = bs.compressed_backup_size/1024./1024.
, database_backup_lsn -- For tlog and differential backups, this is the checkpoint_lsn of the FULL backup it is based on. 
, checkpoint_lsn
, begins_log_chain
FROM msdb.dbo.backupset bs	
LEFT OUTER JOIN msdb.dbo.backupmediafamily bf ON bs.[media_set_id] = bf.[media_set_id]
WHERE recovery_model in ('FULL', 'BULK-LOGGED')
AND bs.backup_start_date > DATEADD(month, -2, sysdatetime()) --only look at last two months
ORDER BY bs.database_name asc, bs.Backup_Start_Date desc;

A complete history of all SQL Server backup and restore operations on a server instance is stored in the msdb system database. For more information on backup history, see Backup History and Header Information (SQL Server).

Create a transaction log backup

Example of how to back up the log:

BACKUP LOG [dbname] TO DISK = 'some_volume:\some_folder\dbname_LOG.trn'

Important

If the database is damaged, see Tail-Log Backups (SQL Server).

ACTIVE_TRANSACTION log_reuse_wait

The steps to troubleshoot ACTIVE_TRANSACTION reason include discovering the long running transaction and resolving it (in some case using the KILL command to do so).

Discover long-running transactions

A very long-running transaction can cause the transaction log to fill. To look for long-running transactions, use one of the following:

This dynamic management view returns information about transactions at the database level. For a long-running transaction, columns of particular interest include the time of the first log record (database_transaction_begin_time), the current state of the transaction (database_transaction_state), and the log sequence number (LSN) of the begin record in the transaction log (database_transaction_begin_lsn).

  • DBCC OPENTRAN. This statement lets you identify the user ID of the owner of the transaction, so you can potentially track down the source of the transaction for a more orderly termination (committing it rather than rolling it back).
Kill a transaction

Sometimes you just have to end the transaction; you may have to use the KILL statement. Please use this statement very carefully, especially when critical processes are running that you don't want to kill. For more information, see KILL (Transact-SQL)

AVAILABILITY_REPLICA log_reuse_wait

When transaction changes at primary Availability replica are not yet hardened on the secondary replica, the transaction log on the primary replica cannot be truncated. This can cause the log to grow , and can occur whether the secondary replica is set for synchronous or asynchronous commit mode. For information on how to troubleshoot this type of issue see Error 9002. The transaction log for database is full due to AVAILABILITY_REPLICA error

CHECKPOINT log_reuse_wait

No checkpoint has occurred since the last log truncation, or the head of the log has not yet moved beyond a virtual log file (VLF). (All recovery models)

This is a routine reason for delaying log truncation. If delayed, consider executing the CHECKPOINT command on the database or examining the log VLFs.

USE dbname; CHECKPOINT
select * from sys.dm_db_log_info(db_id('dbname'))

For more information on log_reuse_wait factors

For a more details see Factors that can delay log truncation

2. Resolve full disk volume

In some situations the disk volume that hosts the transaction log file may fill up. You can take one of the following actions to resolve the log-full scenario that results from a full disk:

Free disk space

You might be able to free disk space on the disk drive that contains the transaction log file for the database by deleting or moving other files. The freed disk space allows the recovery system to enlarge the log file automatically.

Move the log file to a different disk

If you cannot free enough disk space on the drive that currently contains the log file, consider moving the file to another drive with sufficient space.

Important

Log files should never be placed on compressed file systems.

See Move Database Files for information on how to change the location of a log file.

Add a log file on a different disk

Add a new log file to the database on a different disk that has sufficient space by using ALTER DATABASE <database_name> ADD LOG FILE. Multiple log files for a single database should be considered a temporary condition to resolve a space issue, not a long-term condition. Most databases should only have one transaction log file. Continue to investigate the reason why the transaction log is full and cannot be truncated. Consider adding temporary additional transaction log files as an advanced troubleshooting step.

For more information see Add Data or Log Files to a Database.

These steps can be partly-automated by running this T-SQL script which will identify logs files that using a large percentage of disk space and suggest actions:

DECLARE @log_reached_disk_size BIT = 0

SELECT 
    name LogName, 
    physical_name, 
    CONVERT(bigint, size)*8/1024 LogFile_Size_MB, 
    volume_mount_point, 
    available_bytes/1024/1024 Available_Disk_space_MB,
    (CONVERT(bigint, size)*8.0/1024)/(available_bytes/1024/1024 )*100 file_size_as_percentage_of_disk_space,
    db_name(mf.database_id) DbName
FROM sys.master_files mf CROSS APPLY sys.dm_os_volume_stats (mf.database_id, file_id)
WHERE mf.[type_desc] = 'LOG'
    AND (CONVERT(bigint, size)*8.0/1024)/(available_bytes/1024/1024 )*100 > 90 --log is 90% of disk drive
ORDER BY size DESC

if @@ROWCOUNT > 0
BEGIN

    set @log_reached_disk_size = 1

    -- Discover if any logs have are close to or completely filled disk volume they reside on.
    -- Either Add A New File To A New Drive, Or Shrink Existing File
    -- If Cannot Shrink, Go To Cannot Truncate Section

    DECLARE @db_name_filled_disk sysname, @log_name_filled_disk sysname, @go_beyond_size bigint 
    
    DECLARE log_filled_disk CURSOR FOR
        SELECT 
            db_name(mf.database_id),
            name
        FROM sys.master_files mf CROSS APPLY sys.dm_os_volume_stats (mf.database_id, file_id)
        WHERE mf.[type_desc] = 'LOG'
            AND (convert(bigint, size)*8.0/1024)/(available_bytes/1024/1024 )*100 > 90 --log is 90% of disk drive
        ORDER BY size desc

    OPEN log_filled_disk

    FETCH NEXT FROM log_filled_disk into @db_name_filled_disk , @log_name_filled_disk

    WHILE @@FETCH_STATUS = 0
    BEGIN
        
        SELECT 'Transaction log for database "' + @db_name_filled_disk + '" has nearly or completely filled disk volume it resides on!' AS Finding
        SELECT 'Consider using one of the below commands to shrink the "' + @log_name_filled_disk +'" transaction log file size or add a new file to a NEW volume' AS Recommendation
        SELECT 'DBCC SHRINKFILE(''' + @log_name_filled_disk + ''')' AS Shrinkfile_Command
        SELECT 'ALTER DATABASE ' + @db_name_filled_disk + ' ADD LOG FILE ( NAME = N''' + @log_name_filled_disk + '_new'', FILENAME = N''NEW_VOLUME_AND_FOLDER_LOCATION\' + @log_name_filled_disk + '_NEW.LDF'', SIZE = 81920KB , FILEGROWTH = 65536KB )' AS AddNewFile
        SELECT 'If shrink does not reduce the file size, likely it is because it has not been truncated. Please review next section below. See https://docs.microsoft.com/sql/t-sql/database-console-commands/dbcc-shrinkfile-transact-sql' AS TruncateFirst
        SELECT 'Can you free some disk space on this volume? If so, do this to allow for the log to continue growing when needed.' AS FreeDiskSpace




         FETCH NEXT FROM log_filled_disk into @db_name_filled_disk , @log_name_filled_disk

    END

    CLOSE log_filled_disk
    DEALLOCATE log_filled_disk

END

3. Change log size limit or enable Autogrow

Error 9002 can be generated if the transaction log size has been set to an upper limit or Autogrow is not allowed. In this case, enabling autogrow or increasing the log size manually can help resolve the issue. Use this T-SQL command to find such log files and follow the recommendations provided:

SELECT DB_NAME(database_id) DbName,
       name LogName,
       physical_name,
       type_desc ,
       CONVERT(bigint, SIZE)*8/1024 LogFile_Size_MB ,
       CONVERT(bigint,max_size)*8/1024 LogFile_MaxSize_MB ,
       (SIZE*8.0/1024)/(max_size*8.0/1024)*100 percent_full_of_max_size,
       CASE WHEN growth = 0 THEN 'AUTOGROW_DISABLED' ELSE 'Autogrow_Enabled' END as AutoGrow
FROM sys.master_files
WHERE file_id = 2
    AND (SIZE*8.0/1024)/(max_size*8.0/1024)*100 > 90
    AND max_size not in (-1, 268435456)
    OR growth = 0

if @@ROWCOUNT > 0
BEGIN
    DECLARE @db_name_max_size sysname, @log_name_max_size sysname, @configured_max_log_boundary bigint, @auto_grow int
    
    DECLARE reached_max_size CURSOR FOR
        SELECT db_name(database_id),
               name,
               CONVERT(bigint, SIZE)*8/1024,
               growth
        FROM sys.master_files
        WHERE file_id = 2
            AND ( (SIZE*8.0/1024)/(max_size*8.0/1024)*100 > 90
            AND max_size not in (-1, 268435456)
            OR growth = 0 )


    OPEN reached_max_size

    FETCH NEXT FROM reached_max_size into @db_name_max_size , @log_name_max_size, @configured_max_log_boundary, @auto_grow 

    WHILE @@FETCH_STATUS = 0
    BEGIN
        IF @auto_grow = 0
          BEGIN
            SELECT 'The database "' + @db_name_max_size+'" contains a log file "' + @log_name_max_size + '" whose autogrow has been DISABLED' as Finding
            SELECT 'Consider enabling autogrow or increasing file size via these ALTER DATABASE commands' as Recommendation
            SELECT 'ALTER DATABASE ' + @db_name_max_size + ' MODIFY FILE ( NAME = N''' + @log_name_max_size + ''', FILEGROWTH = 65536KB)' as AutoGrowth
          END
        ELSE
          BEGIN
            SELECT 'The database "' + @db_name_max_size+'" contains a log file "' + @log_name_max_size + '" whose max limit is set to ' + convert(varchar(24), @configured_max_log_boundary) + ' MB and this limit has been reached!' as Finding
            SELECT 'Consider using one of the below ALTER DATABASE commands to either change the log file size or add a new file' as Recommendation
          END
        
        SELECT 'ALTER DATABASE ' + @db_name_max_size + ' MODIFY FILE ( NAME = N''' + @log_name_max_size + ''', MAXSIZE = UNLIMITED)' as UnlimitedSize
        SELECT 'ALTER DATABASE ' + @db_name_max_size + ' MODIFY FILE ( NAME = N''' + @log_name_max_size + ''', MAXSIZE = something_larger_than_' + CONVERT(varchar(24), @configured_max_log_boundary) +'MB )' as IncreasedSize
        SELECT 'ALTER DATABASE ' + @db_name_max_size + ' ADD LOG FILE ( NAME = N''' + @log_name_max_size + '_new'', FILENAME = N''SOME_FOLDER_LOCATION\' + @log_name_max_size + '_NEW.LDF'', SIZE = 81920KB , FILEGROWTH = 65536KB )' as AddNewFile

        FETCH NEXT FROM reached_max_size into @db_name_max_size , @log_name_max_size, @configured_max_log_boundary, @auto_grow

    END

    CLOSE reached_max_size
    DEALLOCATE reached_max_size
END
ELSE
    SELECT 'Found no files that have reached max log file size' as Findings

Increase log file size or enable Autogrow

If space is available on the log disk, you can increase the size of the log file. The maximum size for log files is two terabytes (TB) per log file.

If autogrow is disabled, the database is online, and sufficient space is available on the disk, do either of these:

Note

In either case, if the current size limit has been reached, increase the MAXSIZE value.

See also

ALTER DATABASE (Transact-SQL)
Manage the Size of the Transaction Log File
Transaction Log Backups (SQL Server)
sp_add_log_file_recover_suspect_db (Transact-SQL)
MSSQLSERVER_9002
How a log file structure can affect database recovery time - Microsoft Tech Community