Entrenamiento del modelo de agrupación en clústeres

Entrena un modelo de agrupación en clústeres y asigna datos desde el conjunto de entrenamiento a los clústeres

Categoría: machine learning/entrenar

Nota

Se aplica a: machine learning Studio (clásico)

Este contenido solo pertenece a Studio (clásico). Se han agregado módulos similares de arrastrar y colocar al diseñador de Azure Machine Learning. Obtenga más información en este artículo comparativa de las dos versiones.

Información general sobre el módulo

En este artículo se describe cómo usar el módulo entrenar modelo de agrupación en clústeres de Azure machine learning Studio (clásico) para entrenar un modelo de agrupación en clústeres.

El módulo toma un modelo de agrupación en clústeres no entrenado que ya ha configurado mediante el módulo Agrupación en clústeres k-means y entrena el modelo utilizando un conjunto de datos sin etiqueta o con etiqueta. El módulo crea un modelo entrenado que puede usar para la predicción y un conjunto de asignaciones de clúster para cada caso de los datos de entrenamiento.

Nota

No se puede entrenar un modelo de agrupación en clústeres mediante el módulo entrenar modelo , que es el módulo genérico para crear modelos de aprendizaje automático. Es debido a que Entrenar modelo solo funciona con algoritmos de aprendizaje supervisado. K-means y otros algoritmos de agrupación en clústeres permiten el aprendizaje no supervisado, lo que significa que el algoritmo puede aprender de los datos sin etiqueta.

Procedimiento para usar el modelo de entrenamiento de almacenamiento en clúster

  1. Agregue el módulo entrenar agrupación en clústeres al experimento en Studio (clásico). Puede encontrar el módulo en Módulos de Machine Learning de la categoría Entrenar.

  2. Agregue el módulo Agrupación en clústeres k-means u otro módulo personalizado que cree un modelo de agrupación en clústeres compatible y establezca los parámetros del modelo de agrupación en clústeres.

  3. Adjunte un conjunto de datos de entrenamiento a la entrada de la derecha de Entrenamiento del modelo de agrupación en clústeres.

  4. En Conjunto de columnas, seleccione las columnas del conjunto de datos que desea utilizar para compilar clústeres. Asegúrese de seleccionar columnas que sean buenas características: por ejemplo, evite utilizar id. u otras columnas que tengan valores únicos o columnas que tengan todos los mismos valores.

    Si hay una etiqueta, puede usarla como una característica u omitirla.

  5. Seleccione la opción, active la casilla para anexar o desactive solo el resultado si desea generar los datos de entrenamiento junto con la nueva etiqueta de clúster.

    Si anula la selección de esta opción, la salida solo contiene las asignaciones de clúster.

  6. Ejecute el experimento, o haga clic en el módulo Entrenamiento del modelo de agrupación en clústeres y seleccione Ejecutar seleccionados.

Results

Una vez completado el entrenamiento:

  • Para ver el clúster y su separación en un gráfico, haga clic con el botón derecho en el resultado del conjunto de resultados y seleccione visualizar.

    El gráfico representa los componentes principales del clúster, en lugar de los valores reales. Vea análisis de componentes principales para obtener más información.

  • Para ver los valores del conjunto de información, agregue una instancia del módulo convertir en conjunto de DataSet y conéctela a la salida del conjunto de resultados . Ejecute el módulo convertir en conjunto de datos para obtener una copia de los datos que puede ver o descargar.

  • Para guardar el modelo entrenado a fin de volver a usarlo más adelante, haga clic con el botón derecho en el módulo, seleccione Modelo formado y haga clic en Save As Trained Model (Guardar como modelo entrenado).

  • Para generar puntuaciones a partir del modelo, utilice Asignación de datos a clústeres.

Ejemplos

Para obtener un ejemplo de cómo se utiliza la agrupación en clústeres en el aprendizaje automático, vea la Azure AI Gallery:

Entradas esperadas

Nombre Tipo Descripción
Modelo no entrenado Interfaz ICluster Modelo de agrupación en clústeres no entrenado
Dataset Tabla de datos Origen de datos de entrada

Parámetros del módulo

Nombre Intervalo Tipo Valor predeterminado Descripción
Conjunto de columnas cualquiera ColumnSelection Patrón de selección de columnas
Activar para anexar o desactivar solo para resultado cualquiera Boolean true Si el conjunto de datos de salida debe contener un conjunto de datos de entrada anexado por columna de asignaciones (activado) o solo una columna de asignaciones (desactivado)

Salidas

Nombre Tipo Descripción
Modelo entrenado Interfaz ICluster Modelo de agrupación en clústeres entrenado
Conjunto de datos de resultados Tabla de datos Conjunto de datos de entrada anexado por columna de datos de asignaciones o solo columna de asignaciones

Excepciones

Excepción Descripción
Error 0003 Se produce una excepción si una o varias de las entradas son NULL o están vacías.

Para obtener una lista de los errores específicos de los módulos de Studio (clásico), consulte Machine Learning de los códigos de error.

Para obtener una lista de excepciones de API, consulte códigos de error de la API de REST de machine learning.

Vea también

Lista de módulos a-Z
Circulación
Asignación de datos a clústeres
Agrupación en clústeres K-Means