PerformanceCounterType PerformanceCounterType PerformanceCounterType PerformanceCounterType Enum

Definición

Especifica la fórmula que se utiliza para calcular el método NextValue() para una instancia de PerformanceCounter.Specifies the formula used to calculate the NextValue() method for a PerformanceCounter instance.

public enum class PerformanceCounterType
[System.ComponentModel.TypeConverter(typeof(System.Diagnostics.AlphabeticalEnumConverter))]
public enum PerformanceCounterType
type PerformanceCounterType = 
Public Enum PerformanceCounterType
Herencia
PerformanceCounterTypePerformanceCounterTypePerformanceCounterTypePerformanceCounterType
Atributos

Campos

AverageBase AverageBase AverageBase AverageBase 1073939458

Contador base que se utiliza para calcular el promedio de tiempos o recuentos, como AverageTimer32 y AverageCount64.A base counter that is used in the calculation of time or count averages, such as AverageTimer32 and AverageCount64. Almacena el denominador que se utiliza en el cálculo de un contador para presentar el "tiempo por operación" o el "recuento por operación".Stores the denominator for calculating a counter to present "time per operation" or "count per operation".

AverageCount64 AverageCount64 AverageCount64 AverageCount64 1073874176

Contador de promedio que muestra cuántos elementos se procesan de promedio durante una operación.An average counter that shows how many items are processed, on average, during an operation. Los contadores de este tipo muestran la relación entre los elementos procesados y el número de operaciones completadas.Counters of this type display a ratio of the items processed to the number of operations completed. Dicha relación se calcula comparando el número de elementos procesados durante el último intervalo con el número de operaciones completadas durante el mismo intervalo.The ratio is calculated by comparing the number of items processed during the last interval to the number of operations completed during the last interval. Los contadores de este tipo incluyen DiscoFísico\promedio. Bytes de datos/transferencia.Counters of this type include PhysicalDisk\ Avg. Disk Bytes/Transfer.

AverageTimer32 AverageTimer32 AverageTimer32 AverageTimer32 805438464

Contador de tipo promedio que mide el tiempo transcurrido, de promedio, para completar un proceso u operación.An average counter that measures the time it takes, on average, to complete a process or operation. Los contadores de este tipo muestran la relación entre el tiempo total transcurrido del intervalo de muestra y el número de procesos u operaciones completadas durante dicho tiempo.Counters of this type display a ratio of the total elapsed time of the sample interval to the number of processes or operations completed during that time. Este tipo de contador mide el tiempo en pasos del reloj del sistema.This counter type measures time in ticks of the system clock. Los contadores de este tipo incluyen DiscoFísico\promedio. Segundos de disco/transferencia.Counters of this type include PhysicalDisk\ Avg. Disk sec/Transfer.

CounterDelta32 CounterDelta32 CounterDelta32 CounterDelta32 4195328

Contador de diferencia que muestra la variación del atributo medido entre los dos intervalos de muestra más recientes.A difference counter that shows the change in the measured attribute between the two most recent sample intervals.

CounterDelta64 CounterDelta64 CounterDelta64 CounterDelta64 4195584

Contador de diferencia que muestra la variación del atributo medido entre los dos intervalos de muestra más recientes.A difference counter that shows the change in the measured attribute between the two most recent sample intervals. Es igual que el tipo de contador CounterDelta32, salvo que usa campos de mayor tamaño para poder albergar valores mayores.It is the same as the CounterDelta32 counter type except that is uses larger fields to accommodate larger values.

CounterMultiBase CounterMultiBase CounterMultiBase CounterMultiBase 1107494144

Contador base que indica el número de elementos analizados en la muestra.A base counter that indicates the number of items sampled. Se utiliza como denominador en los cálculos, para obtener un promedio de los elementos muestreados al tomar mediciones de tiempo de varios elementos similares.It is used as the denominator in the calculations to get an average among the items sampled when taking timings of multiple, but similar items. Se utiliza con CounterMultiTimer, CounterMultiTimerInverse, CounterMultiTimer100Ns y CounterMultiTimer100NsInverse.Used with CounterMultiTimer, CounterMultiTimerInverse, CounterMultiTimer100Ns, and CounterMultiTimer100NsInverse.

CounterMultiTimer CounterMultiTimer CounterMultiTimer CounterMultiTimer 574686464

Contador de porcentaje que muestra el tiempo activo de uno o más componentes como un porcentaje del tiempo total del intervalo de muestra.A percentage counter that displays the active time of one or more components as a percentage of the total time of the sample interval. Debido a que el numerador registra el tiempo activo de componentes que funcionan simultáneamente, el porcentaje resultante puede superar el 100 por ciento.Because the numerator records the active time of components operating simultaneously, the resulting percentage can exceed 100 percent. Este tipo de contador se diferencia de CounterMultiTimer100Ns en que mide el tiempo en unidades de pasos del contador de rendimiento del sistema, en lugar de unidades de 100 nanosegundos.This counter type differs from CounterMultiTimer100Ns in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units. Este tipo de contador es un temporizador múltiple.This counter type is a multitimer.

CounterMultiTimer100Ns CounterMultiTimer100Ns CounterMultiTimer100Ns CounterMultiTimer100Ns 575735040

Contador de porcentaje que muestra el tiempo activo de uno o más componentes como un porcentaje del tiempo total del intervalo de muestra.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Mide el tiempo en unidades de 100 nanosegundos (ns).It measures time in 100 nanosecond (ns) units. Este tipo de contador es un temporizador múltiple.This counter type is a multitimer.

CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse CounterMultiTimer100NsInverse 592512256

Contador de porcentaje que muestra el tiempo activo de uno o más componentes como un porcentaje del tiempo total del intervalo de muestra.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Los contadores de este tipo miden el tiempo en unidades de 100 nanosegundos (ns).Counters of this type measure time in 100 nanosecond (ns) units. Derivan el tiempo activo midiendo el tiempo durante el cual los componentes no estaban activos y restándole el resultado de multiplicar 100 por ciento por el número de objetos supervisados.They derive the active time by measuring the time that the components were not active and subtracting the result from multiplying 100 percent by the number of objects monitored. Este tipo de contador es un temporizador múltiple inverso.This counter type is an inverse multitimer.

CounterMultiTimerInverse CounterMultiTimerInverse CounterMultiTimerInverse CounterMultiTimerInverse 591463680

Contador de porcentaje que muestra el tiempo activo de uno o más componentes como un porcentaje del tiempo total del intervalo de muestra.A percentage counter that shows the active time of one or more components as a percentage of the total time of the sample interval. Deriva el tiempo activo midiendo el tiempo durante el cual los componentes no estaban activos y restándole el resultado de multiplicar 100 por ciento por el número de objetos supervisados.It derives the active time by measuring the time that the components were not active and subtracting the result from 100 percent by the number of objects monitored. Este tipo de contador es un temporizador múltiple inverso.This counter type is an inverse multitimer. Se diferencia de CounterMultiTimer100NsInverse en que mide el tiempo en unidades de pasos del contador de rendimiento del sistema, en lugar de unidades de 100 nanosegundos.It differs from CounterMultiTimer100NsInverse in that it measures time in units of ticks of the system performance timer, rather than in 100 nanosecond units.

CounterTimer CounterTimer CounterTimer CounterTimer 541132032

Contador de porcentaje que muestra el promedio de tiempo que un componente está activo como un porcentaje del tiempo de muestra total.A percentage counter that shows the average time that a component is active as a percentage of the total sample time.

CounterTimerInverse CounterTimerInverse CounterTimerInverse CounterTimerInverse 557909248

Contador de porcentaje que muestra el porcentaje promedio de tiempo activo observado durante el intervalo de muestra.A percentage counter that displays the average percentage of active time observed during sample interval. El valor de estos contadores se calcula supervisando el porcentaje de tiempo que el servicio estuvo inactivo y restando ese valor del 100 por ciento.The value of these counters is calculated by monitoring the percentage of time that the service was inactive and then subtracting that value from 100 percent. Este tipo de contador es un contador inverso.This is an inverse counter type. Es igual que CounterTimer100NsInv, salvo que mide el tiempo en unidades de pasos del contador de rendimiento del sistema, en lugar de unidades de 100 nanosegundos.It is the same as CounterTimer100NsInv, except that it measures time in units of ticks of the system performance timer rather than in 100 nanosecond units.

CountPerTimeInterval32 CountPerTimeInterval32 CountPerTimeInterval32 CountPerTimeInterval32 4523008

Contador de promedio diseñado para supervisar la longitud promedio de la cola de un recurso a lo largo de un determinado período de tiempo.An average counter designed to monitor the average length of a queue to a resource over time. Muestra la diferencia entre las longitudes de cola observadas durante los dos últimos intervalos de muestra, dividida por la duración del intervalo.It shows the difference between the queue lengths observed during the last two sample intervals divided by the duration of the interval. Este tipo de contador se utiliza normalmente para hacer un seguimiento del número de elementos que están en la cola o a la espera.This type of counter is typically used to track the number of items that are queued or waiting.

CountPerTimeInterval64 CountPerTimeInterval64 CountPerTimeInterval64 CountPerTimeInterval64 4523264

Contador de promedio que supervisa la longitud promedio de la cola de un recurso a lo largo de un determinado período de tiempo.An average counter that monitors the average length of a queue to a resource over time. Los contadores de este tipo muestran la diferencia entre las longitudes de cola observadas durante los dos últimos intervalos de muestra, dividida por la duración del intervalo.Counters of this type display the difference between the queue lengths observed during the last two sample intervals, divided by the duration of the interval. Este tipo de contador es lo mismo que CountPerTimeInterval32, salvo que utiliza campos de mayor tamaño para poder albergar valores más grandes.This counter type is the same as CountPerTimeInterval32 except that it uses larger fields to accommodate larger values. Este tipo de contador se utiliza normalmente para hacer un seguimiento de un gran volumen o de un número muy elevado de elementos que están en la cola o a la espera.This type of counter is typically used to track a high-volume or very large number of items that are queued or waiting.

ElapsedTime ElapsedTime ElapsedTime ElapsedTime 807666944

Temporizador de diferencia que muestra el tiempo total transcurrido entre el inicio de un componente o proceso y el momento en que se calcula este valor.A difference timer that shows the total time between when the component or process started and the time when this value is calculated. Los contadores de este tipo incluyen Sistema\tiempo de actividad del sistema.Counters of this type include System\ System Up Time.

NumberOfItems32 NumberOfItems32 NumberOfItems32 NumberOfItems32 65536

Contador instantáneo que muestra el valor observado más reciente.An instantaneous counter that shows the most recently observed value. Se utiliza, por ejemplo, para mantener un recuento simple de elementos o de operaciones.Used, for example, to maintain a simple count of items or operations. Los contadores de este tipo incluyen Memoria\Bytes disponibles.Counters of this type include Memory\Available Bytes.

NumberOfItems64 NumberOfItems64 NumberOfItems64 NumberOfItems64 65792

Contador instantáneo que muestra el valor observado más reciente.An instantaneous counter that shows the most recently observed value. Se utiliza, por ejemplo, para mantener un recuento simple de un número muy elevado de elementos o de operaciones.Used, for example, to maintain a simple count of a very large number of items or operations. Este tipo de contador es lo mismo que NumberOfItems32, salvo que utiliza campos de mayor tamaño para poder albergar valores más grandes.It is the same as NumberOfItems32 except that it uses larger fields to accommodate larger values.

NumberOfItemsHEX32 NumberOfItemsHEX32 NumberOfItemsHEX32 NumberOfItemsHEX32 0

Contador instantáneo que muestra el valor observado más reciente en formato hexadecimal.An instantaneous counter that shows the most recently observed value in hexadecimal format. Se utiliza, por ejemplo, para mantener un recuento simple de elementos o de operaciones.Used, for example, to maintain a simple count of items or operations.

NumberOfItemsHEX64 NumberOfItemsHEX64 NumberOfItemsHEX64 NumberOfItemsHEX64 256

Contador instantáneo que muestra el valor observado más reciente.An instantaneous counter that shows the most recently observed value. Se utiliza, por ejemplo, para mantener un recuento simple de un número muy elevado de elementos o de operaciones.Used, for example, to maintain a simple count of a very large number of items or operations. Este tipo de contador es lo mismo que NumberOfItemsHEX32, salvo que utiliza campos de mayor tamaño para poder albergar valores más grandes.It is the same as NumberOfItemsHEX32 except that it uses larger fields to accommodate larger values.

RateOfCountsPerSecond32 RateOfCountsPerSecond32 RateOfCountsPerSecond32 RateOfCountsPerSecond32 272696320

Contador de diferencia que muestra el número promedio de operaciones completadas durante cada segundo del intervalo de muestra.A difference counter that shows the average number of operations completed during each second of the sample interval. Este tipo de contador mide el tiempo en pasos del reloj del sistema.Counters of this type measure time in ticks of the system clock. Los contadores de este tipo incluyen Sistema\Operaciones de lectura de archivo/s.Counters of this type include System\ File Read Operations/sec.

RateOfCountsPerSecond64 RateOfCountsPerSecond64 RateOfCountsPerSecond64 RateOfCountsPerSecond64 272696576

Contador de diferencia que muestra el número promedio de operaciones completadas durante cada segundo del intervalo de muestra.A difference counter that shows the average number of operations completed during each second of the sample interval. Este tipo de contador mide el tiempo en pasos del reloj del sistema.Counters of this type measure time in ticks of the system clock. Este tipo de contador es el mismo que el tipo RateOfCountsPerSecond32, pero utiliza campos más grandes para albergar valores más grandes y así supervisar un alto número de elementos u operaciones por segundo, como por ejemplo una tasa de transmisión de bytes.This counter type is the same as the RateOfCountsPerSecond32 type, but it uses larger fields to accommodate larger values to track a high-volume number of items or operations per second, such as a byte-transmission rate. Los contadores de este tipo incluyen Sistema\Bytes de lectura de archivo/s.Counters of this type include System\ File Read Bytes/sec.

RawBase RawBase RawBase RawBase 1073939459

Contador base que almacena el denominador de un contador que presenta una fracción aritmética general.A base counter that stores the denominator of a counter that presents a general arithmetic fraction. Compruebe que este valor es mayor que cero antes de utilizarlo como denominador para calcular el valor RawFraction.Check that this value is greater than zero before using it as the denominator in a RawFraction value calculation.

RawFraction RawFraction RawFraction RawFraction 537003008

Contador de porcentaje instantáneo que muestra la relación entre un subconjunto y su conjunto, en porcentaje.An instantaneous percentage counter that shows the ratio of a subset to its set as a percentage. Por ejemplo, compara el número de bytes utilizados en un disco con el número total de bytes que contiene el disco.For example, it compares the number of bytes in use on a disk to the total number of bytes on the disk. Los contadores de este tipo muestran sólo el porcentaje actual, no un promedio a lo largo del tiempo.Counters of this type display the current percentage only, not an average over time. Los contadores de este tipo incluyen Archivo de paginación\% uso máximo.Counters of this type include Paging File\% Usage Peak.

SampleBase SampleBase SampleBase SampleBase 1073939457

Contador base que almacena el número de interrupciones de muestreo tomadas y se utiliza como denominador en la fracción de muestreo.A base counter that stores the number of sampling interrupts taken and is used as a denominator in the sampling fraction. La fracción de muestreo es el número de muestras que dieron 1 (o true) para una interrupción de muestra.The sampling fraction is the number of samples that were 1 (or true) for a sample interrupt. Compruebe que este valor es mayor que cero antes de utilizarlo como denominador para calcular SampleFraction.Check that this value is greater than zero before using it as the denominator in a calculation of SampleFraction.

SampleCounter SampleCounter SampleCounter SampleCounter 4260864

Contador de promedio que muestra el promedio de operaciones completadas en un segundo.An average counter that shows the average number of operations completed in one second. Cuando un contador de este tipo toma una muestra de los datos, cada interrupción de muestreo devuelve uno o cero.When a counter of this type samples the data, each sampling interrupt returns one or zero. Los datos del contador son el número de contadores muestreados.The counter data is the number of ones that were sampled. Mide el tiempo en unidades de pasos del temporizador de rendimiento del sistema.It measures time in units of ticks of the system performance timer.

SampleFraction SampleFraction SampleFraction SampleFraction 549585920

Contador de porcentaje que muestra la relación media entre el número de aciertos y todas las operaciones realizadas durante los dos últimos intervalos de muestra.A percentage counter that shows the average ratio of hits to all operations during the last two sample intervals. Los contadores de este tipo incluyen Caché% de aciertos de lecturas de anclaje.Counters of this type include Cache\Pin Read Hits %.

Timer100Ns Timer100Ns Timer100Ns Timer100Ns 542180608

Contador de porcentaje que muestra el tiempo activo de un componente como un porcentaje del tiempo total transcurrido del intervalo de muestra.A percentage counter that shows the active time of a component as a percentage of the total elapsed time of the sample interval. Mide el tiempo en unidades de 100 nanosegundos (ns).It measures time in units of 100 nanoseconds (ns). Los contadores de este tipo están diseñados para medir la actividad de un componente en cada momento.Counters of this type are designed to measure the activity of one component at a time. Los contadores de este tipo incluyen Procesador% de tiempo de usuario.Counters of this type include Processor\ % User Time.

Timer100NsInverse Timer100NsInverse Timer100NsInverse Timer100NsInverse 558957824

Contador de porcentaje que muestra el porcentaje promedio de tiempo activo observado durante el intervalo de muestra.A percentage counter that shows the average percentage of active time observed during the sample interval. Este tipo de contador es un contador inverso.This is an inverse counter. Los contadores de este tipo incluyen Procesador% de tiempo de procesador.Counters of this type include Processor\ % Processor Time.

Ejemplos

Los ejemplos siguientes muestran algunos de los tipos de contador en el PerformanceCounterType enumeración.The following examples demonstrate several of the counter types in the PerformanceCounterType enumeration.

AverageCount64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    Description - This counter type shows how many items are processed, on average,
//        during an operation. Counters of this type display a ratio of the items 
//        processed (such as bytes sent) to the number of operations completed. The  
//        ratio is calculated by comparing the number of items processed during the 
//        last interval to the number of operations completed during the last interval. 
// Generic type - Average
//      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
//        of items processed during the last sample interval and the denominator (D) 
//        represents the number of operations completed during the last two sample 
//        intervals. 
//    Average (Nx - N0) / (Dx - D0)  
//    Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)s1.RawValue - (float)s0.RawValue;
   float denomenator = (float)s1.BaseValue - (float)s0.BaseValue;
   float counterValue = numerator / denomenator;
   return counterValue;
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "AverageCounter64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ averageCount64 = gcnew CounterCreationData;
      averageCount64->CounterType = PerformanceCounterType::AverageCount64;
      averageCount64->CounterName = "AverageCounter64Sample";
      CCDC->Add( averageCount64 );
      
      // Add the base counter.
      CounterCreationData^ averageCount64Base = gcnew CounterCreationData;
      averageCount64Base->CounterType = PerformanceCounterType::AverageBase;
      averageCount64Base->CounterName = "AverageCounter64SampleBase";
      CCDC->Add( averageCount64Base );
      
      // Create the category.
      PerformanceCounterCategory::Create( "AverageCounter64SampleCategory", "Demonstrates usage of the AverageCounter64 performance counter type.", CCDC );
      return (true);
   }
   else
   {
      Console::WriteLine( "Category exists - AverageCounter64SampleCategory" );
      return (false);
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64Sample",false );

   BPC = gcnew PerformanceCounter( "AverageCounter64SampleCategory","AverageCounter64SampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}
void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      BPC->Increment();
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App {

    private static PerformanceCounter avgCounter64Sample;
    private static PerformanceCounter avgCounter64SampleBase;

    public static void Main()
    {
    
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);

    }

    private static bool SetupCategory()
    {
        if ( !PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") ) 
        {

            CounterCreationDataCollection counterDataCollection = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageCount64 = new CounterCreationData();
            averageCount64.CounterType = PerformanceCounterType.AverageCount64;
            averageCount64.CounterName = "AverageCounter64Sample";
            counterDataCollection.Add(averageCount64);

            // Add the base counter.
            CounterCreationData averageCount64Base = new CounterCreationData();
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase;
            averageCount64Base.CounterName = "AverageCounter64SampleBase";
            counterDataCollection.Add(averageCount64Base);

            // Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory",
                "Demonstrates usage of the AverageCounter64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, counterDataCollection);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - AverageCounter64SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        avgCounter64Sample = new PerformanceCounter("AverageCounter64SampleCategory", 
            "AverageCounter64Sample", 
            false);


        avgCounter64SampleBase = new PerformanceCounter("AverageCounter64SampleCategory", 
            "AverageCounter64SampleBase", 
            false);

        avgCounter64Sample.RawValue=0;
        avgCounter64SampleBase.RawValue=0;
    }
    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {

            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            avgCounter64Sample.IncrementBy(value);

            avgCounter64SampleBase.Increment();

            if ((j % 10) == 9) 
            {
                OutputSample(avgCounter64Sample.NextSample());
                samplesList.Add( avgCounter64Sample.NextSample() );
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //    Description - This counter type shows how many items are processed, on average,
    //        during an operation. Counters of this type display a ratio of the items 
    //        processed (such as bytes sent) to the number of operations completed. The  
    //        ratio is calculated by comparing the number of items processed during the 
    //        last interval to the number of operations completed during the last interval. 
    // Generic type - Average
    //      Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
    //        of items processed during the last sample interval and the denominator (D) 
    //        represents the number of operations completed during the last two sample 
    //        intervals. 
    //    Average (Nx - N0) / (Dx - D0)  
    //    Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = numerator / denomenator;
        return(counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App

    Private Shared avgCounter64Sample As PerformanceCounter
    Private Shared avgCounter64SampleBase As PerformanceCounter


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub 'Main

    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("AverageCounter64SampleCategory") Then

            Dim counterDataCollection As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageCount64 As New CounterCreationData()
            averageCount64.CounterType = PerformanceCounterType.AverageCount64
            averageCount64.CounterName = "AverageCounter64Sample"
            counterDataCollection.Add(averageCount64)

            ' Add the base counter.
            Dim averageCount64Base As New CounterCreationData()
            averageCount64Base.CounterType = PerformanceCounterType.AverageBase
            averageCount64Base.CounterName = "AverageCounter64SampleBase"
            counterDataCollection.Add(averageCount64Base)

            ' Create the category.
            PerformanceCounterCategory.Create("AverageCounter64SampleCategory", _
               "Demonstrates usage of the AverageCounter64 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, counterDataCollection)

            Return True
        Else
            Console.WriteLine("Category exists - AverageCounter64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory

    Private Shared Sub CreateCounters()
        ' Create the counters.

        avgCounter64Sample = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64Sample", False)

        avgCounter64SampleBase = New PerformanceCounter("AverageCounter64SampleCategory", "AverageCounter64SampleBase", False)

        avgCounter64Sample.RawValue = 0
        avgCounter64SampleBase.RawValue = 0
    End Sub 'CreateCounters

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            avgCounter64Sample.IncrementBy(value)

            avgCounter64SampleBase.Increment()

            If j Mod 10 = 9 Then
                OutputSample(avgCounter64Sample.NextSample())
                samplesList.Add(avgCounter64Sample.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples

    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults

    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	Description - This counter type shows how many items are processed, on average,
    '		during an operation. Counters of this type display a ratio of the items 
    '		processed (such as bytes sent) to the number of operations completed. The  
    '		ratio is calculated by comparing the number of items processed during the 
    '		last interval to the number of operations completed during the last interval. 
    ' Generic type - Average
    '  	Formula - (N1 - N0) / (D1 - D0), where the numerator (N) represents the number 
    '		of items processed during the last sample interval and the denominator (D) 
    '		represents the number of operations completed during the last two sample 
    '		intervals. 
    '	Average (Nx - N0) / (Dx - D0)  
    '	Example PhysicalDisk\ Avg. Disk Bytes/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue

    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'App

AverageTimer32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
// PERF_AVERAGE_TIMER
//  Description - This counter type measures the time it takes, on 
//     average, to complete a process or operation. Counters of this
//     type display a ratio of the total elapsed time of the sample 
//     interval to the number of processes or operations completed
//     during that time. This counter type measures time in ticks 
//     of the system clock. The F variable represents the number of
//     ticks per second. The value of F is factored into the equation
//     so that the result can be displayed in seconds.
//    
//  Generic type - Average
//    
//  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
//     represents the number of ticks counted during the last 
//     sample interval, F represents the frequency of the ticks, 
//     and the denominator (D) represents the number of operations
//     completed during the last sample interval.
//    
//  Average - ((Nx - N0) / F) / (Dx - D0)
//    
//  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
    __int64 n1 = s1.RawValue;
    __int64 n0 = s0.RawValue;
    unsigned __int64 f = s1.SystemFrequency;
    __int64 d1 = s1.BaseValue;
    __int64 d0 = s0.BaseValue;
    double numerator = (double)(n1 - n0);
    double denominator = (double)(d1 - d0);
    float counterValue = (float)((numerator / f) / denominator);
    return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
    Console::WriteLine( "+++++++++++" );
    Console::WriteLine( "Sample values - \r\n" );
    Console::WriteLine( "   CounterType      = {0}", s.CounterType );
    Console::WriteLine( "   RawValue         = {0}", s.RawValue.ToString() );
    Console::WriteLine( "   BaseValue        = {0}", s.BaseValue.ToString() );
    Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency.ToString() );
    Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp.ToString() );
    Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency.ToString() );
    Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp.ToString() );
    Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec.ToString() );
    Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
    if (  !PerformanceCounterCategory::Exists( "AverageTimer32SampleCategory") )
       {
        CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

        // Add the counter.
        CounterCreationData^ averageTimer32 = gcnew CounterCreationData;
        averageTimer32->CounterType = PerformanceCounterType::AverageTimer32;
        averageTimer32->CounterName = "AverageTimer32Sample";
        CCDC->Add( averageTimer32 );

        // Add the base counter.
        CounterCreationData^ averageTimer32Base = gcnew CounterCreationData;
        averageTimer32Base->CounterType = PerformanceCounterType::AverageBase;
        averageTimer32Base->CounterName = "AverageTimer32SampleBase";
        CCDC->Add( averageTimer32Base );

        // Create the category.
        PerformanceCounterCategory::Create( "AverageTimer32SampleCategory", 
            "Demonstrates usage of the AverageTimer32 performance counter type", 
            PerformanceCounterCategoryType::SingleInstance, CCDC );
        Console::WriteLine( "Category created - AverageTimer32SampleCategory" );
        return (true);
        }

    Console::WriteLine( "Category exists - AverageTimer32SampleCategory" );
    return (false);
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
    // Create the counters.
    PC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32Sample",false );
    BPC = gcnew PerformanceCounter( "AverageTimer32SampleCategory","AverageTimer32SampleBase",false );
    PC->RawValue = 0;
    BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, 
PerformanceCounter^ BPC )
{
    __int64 perfTime = 0;
    Random^ r = gcnew Random( DateTime::Now.Millisecond );

    // Loop for the samples.
    for ( int i = 0; i < 10; i++ )
        {
        PC->RawValue = Stopwatch::GetTimestamp();
        BPC->IncrementBy( 10 );
        System::Threading::Thread::Sleep( 1000 );
        Console::WriteLine( "Next value = {0}", PC->NextValue().ToString() );
        samplesList->Add( PC->NextSample() );
        }
}

void CalculateResults( ArrayList^ samplesList )
{
    for ( int i = 0; i < (samplesList->Count - 1); i++ )
        {
        // Output the sample.
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
        OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

        // Use .NET to calculate the counter value.
        Console::WriteLine( ".NET computed counter value = {0}",
           CounterSample::Calculate(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

        // Calculate the counter value manually.
        Console::WriteLine( "My computed counter value = {0}", 
            MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),
           *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
        }
}

int main()
{
    ArrayList^ samplesList = gcnew ArrayList;
    PerformanceCounter^ PC;
    PerformanceCounter^ BPC;
    SetupCategory();
    CreateCounters( PC, BPC );
    CollectSamples( samplesList, PC, BPC );
    CalculateResults( samplesList );

    Console::WriteLine("\n\nHit ENTER to return");
    Console::ReadLine();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App
{

    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    private const String categoryName = "AverageTimer32SampleCategory";
    private const String counterName = "AverageTimer32Sample";
    private const String baseCounterName = "AverageTimer32SampleBase";

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }




    private static bool SetupCategory()
    {

        if (!PerformanceCounterCategory.Exists(categoryName))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData averageTimer32 = new CounterCreationData();
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32;
            averageTimer32.CounterName = counterName;
            CCDC.Add(averageTimer32);

            // Add the base counter.
            CounterCreationData averageTimer32Base = new CounterCreationData();
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase;
            averageTimer32Base.CounterName = baseCounterName;
            CCDC.Add(averageTimer32Base);

            // Create the category.
            PerformanceCounterCategory.Create(categoryName, 
                "Demonstrates usage of the AverageTimer32 performance counter type", 
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            Console.WriteLine("Category created - " + categoryName);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - " + categoryName);
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter(categoryName,
                 counterName,
                 false);

        BPC = new PerformanceCounter(categoryName,
            baseCounterName,
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }


    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Loop for the samples.
        for (int i = 0; i < 10; i++)
        {

            PC.RawValue = Stopwatch.GetTimestamp();

            BPC.IncrementBy(10);

            System.Threading.Thread.Sleep(1000);

            Console.WriteLine("Next value = " + PC.NextValue().ToString());
            samplesList.Add(PC.NextSample());

        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSample.Calculate((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

        }
    }



    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    // PERF_AVERAGE_TIMER
    //  Description - This counter type measures the time it takes, on 
    //     average, to complete a process or operation. Counters of this
    //     type display a ratio of the total elapsed time of the sample 
    //     interval to the number of processes or operations completed
    //     during that time. This counter type measures time in ticks 
    //     of the system clock. The F variable represents the number of
    //     ticks per second. The value of F is factored into the equation
    //     so that the result can be displayed in seconds.
    //    
    //  Generic type - Average
    //    
    //  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    //     represents the number of ticks counted during the last 
    //     sample interval, F represents the frequency of the ticks, 
    //     and the denominator (D) represents the number of operations
    //     completed during the last sample interval.
    //    
    //  Average - ((Nx - N0) / F) / (Dx - D0)
    //    
    //  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Int64 n1 = s1.RawValue;
        Int64 n0 = s0.RawValue;
        ulong f = (ulong)s1.SystemFrequency;
        Int64 d1 = s1.BaseValue;
        Int64 d0 = s0.BaseValue;

        double numerator = (double)(n1 - n0);
        double denominator = (double)(d1 - d0);
        Single counterValue = (Single)((numerator / f) / denominator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices
Imports Microsoft.VisualBasic

Public Class App

    Private Const categoryName As String = "AverageTimer32SampleCategory"
    Private Const counterName As String = "AverageTimer32Sample"
    Private Const baseCounterName As String = "AverageTimer32SampleBase"

    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        SetupCategory()
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)
    End Sub


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim averageTimer32 As New CounterCreationData()
            averageTimer32.CounterType = PerformanceCounterType.AverageTimer32
            averageTimer32.CounterName = counterName
            CCDC.Add(averageTimer32)

            ' Add the base counter.
            Dim averageTimer32Base As New CounterCreationData()
            averageTimer32Base.CounterType = PerformanceCounterType.AverageBase
            averageTimer32Base.CounterName = baseCounterName
            CCDC.Add(averageTimer32Base)

            ' Create the category.
            PerformanceCounterCategory.Create( _
               categoryName, _
               "Demonstrates usage of the AverageTimer32 performance counter type", _
                 PerformanceCounterCategoryType.SingleInstance, CCDC)

            Console.WriteLine("Category created - " + categoryName)

            Return True
        Else
            Console.WriteLine(("Category exists - " + _
               categoryName))
            Return False
        End If
    End Function


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter(categoryName, _
              counterName, False)

        BPC = New PerformanceCounter(categoryName, _
              baseCounterName, False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim i As Integer
        For i = 0 To 9

            PC.RawValue = Stopwatch.GetTimeStamp()

            BPC.IncrementBy(10)

            System.Threading.Thread.Sleep(1000)
            Console.WriteLine(("Next value = " + PC.NextValue().ToString()))
            samplesList.Add(PC.NextSample())
        Next i
    End Sub


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        Dim sample1 As CounterSample
        Dim sample2 As CounterSample
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            sample1 = CType(samplesList(i), CounterSample)
            sample2 = CType(samplesList(i + 1), CounterSample)
            OutputSample(sample1)
            OutputSample(sample2)

            ' Use .NET to calculate the counter value.
            Console.WriteLine((".NET computed counter value = " _
               + CounterSample.Calculate(sample1, sample2).ToString()))

            ' Calculate the counter value manually.
            Console.WriteLine(("My computed counter value = " _
               + MyComputeCounterValue(sample1, sample2).ToString()))

        Next i
    End Sub


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    ' PERF_AVERAGE_TIMER
    '  Description - This counter type measures the time it takes, on 
    '     average, to complete a process or operation. Counters of this
    '     type display a ratio of the total elapsed time of the sample 
    '     interval to the number of processes or operations completed
    '     during that time. This counter type measures time in ticks 
    '     of the system clock. The F variable represents the number of
    '     ticks per second. The value of F is factored into the equation
    '     so that the result can be displayed in seconds.
    '
    '  Generic type - Average
    '
    '  Formula - ((N1 - N0) / F) / (D1 - D0), where the numerator (N)
    '     represents the number of ticks counted during the last 
    '     sample interval, F represents the frequency of the ticks, 
    '     and the denominator (D) represents the number of operations
    '     completed during the last sample interval.
    '
    '  Average - ((Nx - N0) / F) / (Dx - D0)
    '
    '  Example - PhysicalDisk\ Avg. Disk sec/Transfer 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//+++++++
    Private Shared Function MyComputeCounterValue( _
    ByVal s0 As CounterSample, _
    ByVal s1 As CounterSample) As Single
        Dim n1 As Int64 = s1.RawValue
        Dim n0 As Int64 = s0.RawValue
        Dim f As Decimal = CType(s1.SystemFrequency, Decimal)
        Dim d1 As Int64 = s1.BaseValue
        Dim d0 As Int64 = s0.BaseValue

        Dim numerator As Double = System.Convert.ToDouble(n1 - n0)
        Dim denominator As Double = System.Convert.ToDouble(d1 - d0)
        Dim counterValue As Single = CType(numerator, Single)
        counterValue = counterValue / CType(f, Single)
        counterValue = counterValue / CType(denominator, Single)

        Return counterValue
    End Function


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub


End Class

ElapsedTime

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
using namespace System::Runtime::InteropServices;

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

void CollectSamples()
{
   String^ categoryName = "ElapsedTimeSampleCategory";
   String^ counterName = "ElapsedTimeSample";
   
   // Create the performance counter category.
   if (  !PerformanceCounterCategory::Exists( categoryName ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ ETimeData = gcnew CounterCreationData;
      ETimeData->CounterType = PerformanceCounterType::ElapsedTime;
      ETimeData->CounterName = counterName;
      CCDC->Add( ETimeData );
      
      // Create the category.
      PerformanceCounterCategory::Create( categoryName,
         "Demonstrates ElapsedTime performance counter usage.",
         CCDC );
   }
   else
   {
      Console::WriteLine( "Category exists - {0}", categoryName );
   }

   
   // Create the performance counter.
   PerformanceCounter^ PC = gcnew PerformanceCounter( categoryName,
                                                      counterName,
                                                      false );
   // Initialize the counter.
   PC->RawValue = Stopwatch::GetTimestamp();

   DateTime Start = DateTime::Now;
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      // Output the values.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( "NextValue() = {0}", PC->NextValue() );
         Console::WriteLine( "Actual elapsed time = {0}", DateTime::Now.Subtract( Start ) );
         OutputSample( PC->NextSample() );
      }
      
      // Reset the counter on every 20th iteration.
      if ( j % 20 == 0 )
      {
         PC->RawValue = Stopwatch::GetTimestamp();
         Start = DateTime::Now;
      }
      System::Threading::Thread::Sleep( 50 );
   }

   Console::WriteLine( "Elapsed time = {0}", DateTime::Now.Subtract( Start ) );
}

int main()
{
   CollectSamples();
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Runtime.InteropServices;

public class App 
{

    public static void Main()
    {	
        CollectSamples();
    }

   
    public static void CollectSamples()
    {
        const String categoryName = "ElapsedTimeSampleCategory";
        const String counterName = "ElapsedTimeSample";

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if ( !PerformanceCounterCategory.Exists(categoryName) ) 
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData ETimeData = new CounterCreationData();
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime;
            ETimeData.CounterName = counterName;
            CCDC.Add(ETimeData);	   
		
            // Create the category.
            PerformanceCounterCategory.Create(categoryName,
                    "Demonstrates ElapsedTime performance counter usage.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            // Return, rerun the application to make use of the new counters.
            return;

        }
        else
        {
            Console.WriteLine("Category exists - {0}", categoryName);
        }        

        // Create the performance counter.
        PerformanceCounter PC = new PerformanceCounter(categoryName, 
                                                       counterName, 
                                                       false);
        // Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp();

        DateTime Start = DateTime.Now;

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
            // Output the values.
            if ((j % 10) == 9) 
            {
                Console.WriteLine("NextValue() = " + PC.NextValue().ToString());
                Console.WriteLine("Actual elapsed time = " + DateTime.Now.Subtract(Start).ToString());
                OutputSample(PC.NextSample());
            }

            // Reset the counter on every 20th iteration.
            if (j % 20 == 0)
            {
                PC.RawValue = Stopwatch.GetTimestamp();
                Start = DateTime.Now;
            }
            System.Threading.Thread.Sleep(50);
        }

        Console.WriteLine("Elapsed time = " + DateTime.Now.Subtract(Start).ToString());
    }

	
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics
Imports System.Runtime.InteropServices
Imports Microsoft.VisualBasic

Public Class App

    Public Shared Sub Main()
        CollectSamples()
    End Sub

    Private Shared Sub CollectSamples()

        Dim categoryName As String = "ElapsedTimeSampleCategory"
        Dim counterName As String = "ElapsedTimeSample"

        If Not PerformanceCounterCategory.Exists(categoryName) Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim ETimeData As New CounterCreationData()
            ETimeData.CounterType = PerformanceCounterType.ElapsedTime
            ETimeData.CounterName = counterName
            CCDC.Add(ETimeData)

            ' Create the category.
            PerformanceCounterCategory.Create(categoryName, _
               "Demonstrates ElapsedTime performance counter usage.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

        Else
            Console.WriteLine("Category exists - {0}", categoryName)
        End If

        ' Create the counter.
        Dim PC As PerformanceCounter
        PC = New PerformanceCounter(categoryName, counterName, False)

        ' Initialize the counter.
        PC.RawValue = Stopwatch.GetTimestamp()

        Dim Start As DateTime = DateTime.Now

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            ' Output the values.
            If j Mod 10 = 9 Then
                Console.WriteLine(("NextValue() = " _
                    + PC.NextValue().ToString()))
                Console.WriteLine(("Actual elapsed time = " _
                    + DateTime.Now.Subtract(Start).ToString()))
                OutputSample(PC.NextSample())
            End If

            ' Reset the counter every 20th iteration.
            If j Mod 20 = 0 Then
                PC.RawValue = Stopwatch.GetTimestamp()
                Start = DateTime.Now
            End If
            System.Threading.Thread.Sleep(50)
        Next j

        Console.WriteLine(("Elapsed time = " + _
              DateTime.Now.Subtract(Start).ToString()))
    End Sub


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++")

        Console.WriteLine("Sample values - " + ControlChars.Cr _
              + ControlChars.Lf)
        Console.WriteLine(("   BaseValue        = " _
              + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + _
              s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + _
              s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + _
              s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + _
              s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + _
              s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + _
              s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + _
              s.TimeStamp100nSec.ToString()))

        Console.WriteLine("+++++++")
    End Sub
End Class

NumberOfItems32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}

// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems32Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems32SampleCategory", "Demonstrates usage of the NumberOfItems32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "NumberOfItems32SampleCategory","NumberOfItems32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

void main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

	private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

    private static bool SetupCategory()
    {		
        if ( !PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") ) 
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData NOI64 = new CounterCreationData();
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
            NOI64.CounterName = "NumberOfItems32Sample";
            CCDC.Add(NOI64);

            // Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory",
                "Demonstrates usage of the NumberOfItems32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return(true);
        }
        else
        {
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("NumberOfItems32SampleCategory", 
			"NumberOfItems32Sample", 
			false);

        PC.RawValue=0;
        
    }

	private static void CollectSamples(ArrayList samplesList)
	{
	
		
		
		Random r = new Random( DateTime.Now.Millisecond );

		// Loop for the samples.
		for (int j = 0; j < 100; j++) 
		{
	        
			int value = r.Next(1, 10);
			Console.Write(j + " = " + value);

			PC.IncrementBy(value);

			if ((j % 10) == 9) 
			{
				OutputSample(PC.NextSample());
				samplesList.Add( PC.NextSample() );
			}
			else
				Console.WriteLine();
	        
			System.Threading.Thread.Sleep(50);
		}

		
	}


    private static void CalculateResults(ArrayList samplesList)
    {
        for(int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample( (CounterSample)samplesList[i] );
            OutputSample( (CounterSample)samplesList[i+1] );

			// Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + 
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

			// Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i+1]) );

        }
    }
	

	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single counterValue = s1.RawValue;
		return(counterValue);
	}
	
	// Output information about the counter sample.
	private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}


	
}
Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub 'Main


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems32SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems32Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems32SampleCategory", _
            "Demonstrates usage of the NumberOfItems32 performance counter type.", _
                      PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("NumberOfItems32SampleCategory", "NumberOfItems32Sample", False)

        PC.RawValue = 0
    End Sub 'CreateCounters


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)



        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write(j.ToString() + " = " + value.ToString())

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples




    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine("   BaseValue        = " + s.BaseValue.ToString())
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency.ToString())
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp.ToString())
        Console.WriteLine("   CounterType      = " + s.CounterType.ToString())
        Console.WriteLine("   RawValue         = " + s.RawValue.ToString())
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency.ToString())
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp.ToString())
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString())
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'NumberOfItems64 


NumberOfItems64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float counterValue = (float)s1.RawValue;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "NumberOfItems64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ NOI64 = gcnew CounterCreationData;
      NOI64->CounterType = PerformanceCounterType::NumberOfItems64;
      NOI64->CounterName = "NumberOfItems64Sample";
      CCDC->Add( NOI64 );

      // Create the category.
      PerformanceCounterCategory::Create( "NumberOfItems64SampleCategory", "Demonstrates usage of the NumberOfItems64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - NumberOfItems64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counters.
   PC = gcnew PerformanceCounter( "NumberOfItems64SampleCategory","NumberOfItems64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      PC->IncrementBy( value );
      if ( (j % 10) == 9 )
      {
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class NumberOfItems64
{

	private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
		CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

	private static bool SetupCategory()
	{		
		if ( !PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") ) 
		{

			CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

			// Add the counter.
			CounterCreationData NOI64 = new CounterCreationData();
			NOI64.CounterType = PerformanceCounterType.NumberOfItems64;
			NOI64.CounterName = "NumberOfItems64Sample";
			CCDC.Add(NOI64);

			// Create the category.
			PerformanceCounterCategory.Create("NumberOfItems64SampleCategory",
                "Demonstrates usage of the NumberOfItems64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
			return(true);
		}
		else
		{
			Console.WriteLine("Category exists - NumberOfItems64SampleCategory");
			return(false);
		}
	}

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("NumberOfItems64SampleCategory", 
            "NumberOfItems64Sample", 
            false);

        PC.RawValue=0;
        
    }

    private static void CollectSamples(ArrayList samplesList)
    {
		
        Random r = new Random( DateTime.Now.Millisecond );

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
	        
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            PC.IncrementBy(value);

            if ((j % 10) == 9) 
            {
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
                Console.WriteLine();
	        
            System.Threading.Thread.Sleep(50);
        }

    }

	private static void CalculateResults(ArrayList samplesList)
	{
		for(int i = 0; i < (samplesList.Count - 1); i++)
		{
			// Output the sample.
			OutputSample( (CounterSample)samplesList[i] );
			OutputSample( (CounterSample)samplesList[i+1] );

            // Use .NET to calculate the counter value.
			Console.WriteLine(".NET computed counter value = " + 
				CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
			Console.WriteLine("My computed counter value = " + 
				MyComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

		}
	}

	
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single counterValue = s1.RawValue;
		return(counterValue);
	}
	
	// Output information about the counter sample.
    private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}

}
Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class NumberOfItems64

    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub 'Main


    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("NumberOfItems64SampleCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim NOI64 As New CounterCreationData()
            NOI64.CounterType = PerformanceCounterType.NumberOfItems64
            NOI64.CounterName = "NumberOfItems64Sample"
            CCDC.Add(NOI64)

            ' Create the category.
            PerformanceCounterCategory.Create("NumberOfItems64SampleCategory", _
            "Demonstrates usage of the NumberOfItems64 performance counter type.", _
                   PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - NumberOfItems64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("NumberOfItems64SampleCategory", "NumberOfItems64Sample", False)

        PC.RawValue = 0
    End Sub 'CreateCounters


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            PC.IncrementBy(value)

            If j Mod 10 = 9 Then
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim counterValue As [Single] = s1.RawValue
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'NumberOfItems64 

SampleFraction

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

// Provides a SampleFraction counter to measure the percentage of the user processor 
// time for this process to total processor time for the process.
public class App
{

    private static PerformanceCounter perfCounter;
    private static PerformanceCounter basePerfCounter;
    private static Process thisProcess = Process.GetCurrentProcess();

    public static void Main()
    {

        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);

    }


    private static bool SetupCategory()
    {
        if (!PerformanceCounterCategory.Exists("SampleFractionCategory"))
        {

            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData sampleFraction = new CounterCreationData();
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction;
            sampleFraction.CounterName = "SampleFractionSample";
            CCDC.Add(sampleFraction);

            // Add the base counter.
            CounterCreationData sampleFractionBase = new CounterCreationData();
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase;
            sampleFractionBase.CounterName = "SampleFractionSampleBase";
            CCDC.Add(sampleFractionBase);

            // Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory",
                "Demonstrates usage of the SampleFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - SampleFractionCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.

        perfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSample",
            false);


        basePerfCounter = new PerformanceCounter("SampleFractionCategory",
            "SampleFractionSampleBase",
            false);


        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks;
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks;
    }
    private static void CollectSamples(ArrayList samplesList)
    {


        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks);

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks);

            if ((j % 10) == 9)
            {
                OutputSample(perfCounter.NextSample());
                samplesList.Add(perfCounter.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

        }
    }


    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Description - This counter type provides A percentage counter that shows the 
    // average ratio of user proccessor time to total processor time  during the last 
    // two sample intervals.
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)s1.RawValue - (Single)s0.RawValue;
        Single denomenator = (Single)s1.BaseValue - (Single)s0.BaseValue;
        Single counterValue = 100 * (numerator / denomenator);
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}
Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics


' Provides a SampleFraction counter to measure the percentage of the user processor 
' time for this process to total processor time for the process.

Public Class App

    Private Shared perfCounter As PerformanceCounter
    Private Shared basePerfCounter As PerformanceCounter
    Private Shared thisProcess As Process = Process.GetCurrentProcess()


    Public Shared Sub Main()

        Dim samplesList As New ArrayList()

        ' If the category does not exist, create the category and exit.
        ' Performance counters should not be created and immediately used.
        ' There is a latency time to enable the counters, they should be created
        ' prior to executing the application that uses the counters.
        ' Execute this sample a second time to use the category.
        If SetupCategory() Then
            Return
        End If
        CreateCounters()
        CollectSamples(samplesList)
        CalculateResults(samplesList)

    End Sub 'Main



    Private Shared Function SetupCategory() As Boolean
        If Not PerformanceCounterCategory.Exists("SampleFractionCategory") Then

            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim sampleFraction As New CounterCreationData()
            sampleFraction.CounterType = PerformanceCounterType.SampleFraction
            sampleFraction.CounterName = "SampleFractionSample"
            CCDC.Add(sampleFraction)

            ' Add the base counter.
            Dim sampleFractionBase As New CounterCreationData()
            sampleFractionBase.CounterType = PerformanceCounterType.SampleBase
            sampleFractionBase.CounterName = "SampleFractionSampleBase"
            CCDC.Add(sampleFractionBase)

            ' Create the category.
            PerformanceCounterCategory.Create("SampleFractionCategory", "Demonstrates usage of the SampleFraction performance counter type.", PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - SampleFractionCategory")
            Return False
        End If

    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        perfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSample", False)


        basePerfCounter = New PerformanceCounter("SampleFractionCategory", "SampleFractionSampleBase", False)


        perfCounter.RawValue = thisProcess.UserProcessorTime.Ticks
        basePerfCounter.RawValue = thisProcess.TotalProcessorTime.Ticks

    End Sub 'CreateCounters

    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)


        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            perfCounter.IncrementBy(thisProcess.UserProcessorTime.Ticks)

            basePerfCounter.IncrementBy(thisProcess.TotalProcessorTime.Ticks)

            If j Mod 10 = 9 Then
                OutputSample(perfCounter.NextSample())
                samplesList.Add(perfCounter.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j

    End Sub 'CollectSamples


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1)
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)))
        Next i

    End Sub 'CalculateResults




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Description - This counter type provides A percentage counter that shows the 
    ' average ratio of user proccessor time to total processor time  during the last 
    ' two sample intervals.
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue, [Single]) - CType(s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.BaseValue, [Single]) - CType(s0.BaseValue, [Single])
        Dim counterValue As [Single] = 100 * (numerator / denomenator)
        Return counterValue

    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(vbCr + vbLf + "+++++++++++")
        Console.WriteLine("Sample values - " + vbCr + vbLf)
        Console.WriteLine("   BaseValue        = " + s.BaseValue)
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency)
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp)
        Console.WriteLine("   CounterType      = " + s.CounterType)
        Console.WriteLine("   RawValue         = " + s.RawValue)
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency)
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp)
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec)
        Console.WriteLine("++++++++++++++++++++++")

    End Sub 'OutputSample
End Class 'App

RateOfCountsPerSecond32

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//         Average - (Nx - N0) / ((Dx - D0) / F) 
//
//       Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond32SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts32 = gcnew CounterCreationData;
      rateOfCounts32->CounterType = PerformanceCounterType::RateOfCountsPerSecond32;
      rateOfCounts32->CounterName = "RateOfCountsPerSecond32Sample";
      CCDC->Add( rateOfCounts32 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond32SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond32SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond32SampleCategory","RateOfCountsPerSecond32Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App 
{
    private static PerformanceCounter PC;

	public static void Main()
	{	
		ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
		CollectSamples(samplesList);
		CalculateResults(samplesList);
	}

    private static bool SetupCategory()
    {
		
        if ( !PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") ) 
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts32 = new CounterCreationData();
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32;
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample";
            CCDC.Add(rateOfCounts32);
	        
             // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory", 
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC); 
              return(true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory");
            return(false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond32SampleCategory", 
            "RateOfCountsPerSecond32Sample", 
            false);

        PC.RawValue=0;
        
    }

    private static void CollectSamples(ArrayList samplesList)
    {
	
        Random r = new Random( DateTime.Now.Millisecond );

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++) 
        {
	        
            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9) 
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add( PC.NextSample() );
            }
            else
                Console.WriteLine();
	        
            System.Threading.Thread.Sleep(50);
        }
    }

	private static void CalculateResults(ArrayList samplesList)
	{
		for(int i = 0; i < (samplesList.Count - 1); i++)
		{
			// Output the sample.
			OutputSample( (CounterSample)samplesList[i] );
			OutputSample( (CounterSample)samplesList[i+1] );


            // Use .NET to calculate the counter value.
			Console.WriteLine(".NET computed counter value = " + 
				CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + 
				MyComputeCounterValue((CounterSample)samplesList[i],
				(CounterSample)samplesList[i+1]) );


		}
	}


	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	//	PERF_COUNTER_COUNTER
	//	Description	 - This counter type shows the average number of operations completed
	//		during each second of the sample interval. Counters of this type
	//		measure time in ticks of the system clock. The F variable represents
	//		the number of ticks per second. The value of F is factored into the
	//		equation so that the result can be displayed in seconds.
	//
    //	Generic type - Difference
	//
	//	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
	//		of operations performed during the last sample interval, the denominator
	//		(D) represents the number of ticks elapsed during the last sample
	//		interval, and F is the frequency of the ticks.
	//
	//	     Average - (Nx - N0) / ((Dx - D0) / F) 
	//
	//       Example - System\ File Read Operations/sec 
	//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
	private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
	{
		Single numerator = (Single)(s1.RawValue - s0.RawValue);
		Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
		Single counterValue = numerator / denomenator;
		return(counterValue);
	}
	
    // Output information about the counter sample.
	private static void OutputSample(CounterSample s)
	{
		Console.WriteLine("\r\n+++++++++++");
		Console.WriteLine("Sample values - \r\n");
		Console.WriteLine("   BaseValue        = " + s.BaseValue);
		Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
		Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
		Console.WriteLine("   CounterType      = " + s.CounterType);
		Console.WriteLine("   RawValue         = " + s.RawValue);
		Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
		Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
		Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
		Console.WriteLine("++++++++++++++++++++++");
	}

}

Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub 'Main


    Private Shared Function SetupCategory() As Boolean

        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond32SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts32 As New CounterCreationData()
            rateOfCounts32.CounterType = PerformanceCounterType.RateOfCountsPerSecond32
            rateOfCounts32.CounterName = "RateOfCountsPerSecond32Sample"
            CCDC.Add(rateOfCounts32)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond32SampleCategory", _
                "Demonstrates usage of the RateOfCountsPerSecond32 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond32SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond32SampleCategory", "RateOfCountsPerSecond32Sample", False)

        PC.RawValue = 0
    End Sub 'CreateCounters


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults





    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	     Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '       Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'App 

RateOfCountsPerSecond64

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
//    PERF_COUNTER_COUNTER
//    Description     - This counter type shows the average number of operations completed
//        during each second of the sample interval. Counters of this type
//        measure time in ticks of the system clock. The F variable represents
//        the number of ticks per second. The value of F is factored into the
//        equation so that the result can be displayed in seconds.
//
//    Generic type - Difference
//
//    Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
//        of operations performed during the last sample interval, the denominator
//        (D) represents the number of ticks elapsed during the last sample
//        interval, and F is the frequency of the ticks.
//
//    Average - (Nx - N0) / ((Dx - D0) / F) 
//
//  Example - System\ File Read Operations/sec 
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample s0, CounterSample s1 )
{
   float numerator = (float)(s1.RawValue - s0.RawValue);
   float denomenator = (float)(s1.TimeStamp - s0.TimeStamp) / (float)s1.SystemFrequency;
   float counterValue = numerator / denomenator;
   return counterValue;
}

void OutputSample( CounterSample s )
{
   Console::WriteLine( "\r\n+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RateOfCountsPerSecond64SampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;

      // Add the counter.
      CounterCreationData^ rateOfCounts64 = gcnew CounterCreationData;
      rateOfCounts64->CounterType = PerformanceCounterType::RateOfCountsPerSecond64;
      rateOfCounts64->CounterName = "RateOfCountsPerSecond64Sample";
      CCDC->Add( rateOfCounts64 );

      // Create the category.
      PerformanceCounterCategory::Create( "RateOfCountsPerSecond64SampleCategory", "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RateOfCountsPerSecond64SampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC )
{
   // Create the counter.
   PC = gcnew PerformanceCounter( "RateOfCountsPerSecond64SampleCategory","RateOfCountsPerSecond64Sample",false );
   PC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );

   // Initialize the performance counter.
   PC->NextSample();

   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      PC->IncrementBy( value );
      Console::Write( "{0} = {1}", j, value );
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );
   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < (samplesList->Count - 1); i++ )
   {
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) );

      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );

      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]),  *safe_cast<CounterSample^>(samplesList[ i + 1 ]) ) );
   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   SetupCategory();
   CreateCounters( PC );
   CollectSamples( samplesList, PC );
   CalculateResults( samplesList );
}
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;

public class App
{
    private static PerformanceCounter PC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Perfomance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the category.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {


        if (!PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory"))
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rateOfCounts64 = new CounterCreationData();
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64;
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample";
            CCDC.Add(rateOfCounts64);

            // Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory",
                "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);
            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counter.
        PC = new PerformanceCounter("RateOfCountsPerSecond64SampleCategory",
            "RateOfCountsPerSecond64Sample",
            false);

        PC.RawValue = 0;

    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {

            int value = r.Next(1, 10);
            PC.IncrementBy(value);
            Console.Write(j + " = " + value);

            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }

    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < (samplesList.Count - 1); i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);
            OutputSample((CounterSample)samplesList[i + 1]);


            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i],
                (CounterSample)samplesList[i + 1]));


        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    //	PERF_COUNTER_COUNTER
    //	Description	 - This counter type shows the average number of operations completed
    //		during each second of the sample interval. Counters of this type
    //		measure time in ticks of the system clock. The F variable represents
    //		the number of ticks per second. The value of F is factored into the
    //		equation so that the result can be displayed in seconds.
    //
    //	Generic type - Difference
    //
    //	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    //		of operations performed during the last sample interval, the denominator
    //		(D) represents the number of ticks elapsed during the last sample
    //		interval, and F is the frequency of the ticks.
    //
    //	Average - (Nx - N0) / ((Dx - D0) / F) 
    //
    //  Example - System\ File Read Operations/sec 
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample s0, CounterSample s1)
    {
        Single numerator = (Single)(s1.RawValue - s0.RawValue);
        Single denomenator = (Single)(s1.TimeStamp - s0.TimeStamp) / (Single)s1.SystemFrequency;
        Single counterValue = numerator / denomenator;
        return (counterValue);
    }

    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("\r\n+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }
}

Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _

Public Class App
    Private Shared PC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()
        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If
    End Sub 'Main


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RateOfCountsPerSecond64SampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rateOfCounts64 As New CounterCreationData()
            rateOfCounts64.CounterType = PerformanceCounterType.RateOfCountsPerSecond64
            rateOfCounts64.CounterName = "RateOfCountsPerSecond64Sample"
            CCDC.Add(rateOfCounts64)

            ' Create the category.
            PerformanceCounterCategory.Create("RateOfCountsPerSecond64SampleCategory", _
            "Demonstrates usage of the RateOfCountsPerSecond64 performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)
            Return True
        Else
            Console.WriteLine("Category exists - RateOfCountsPerSecond64SampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counter.
        PC = New PerformanceCounter("RateOfCountsPerSecond64SampleCategory", "RateOfCountsPerSecond64Sample", False)

        PC.RawValue = 0
    End Sub 'CreateCounters


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99

            Dim value As Integer = r.Next(1, 10)
            PC.IncrementBy(value)
            Console.Write((j.ToString() + " = " + value.ToString()))

            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples


    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To (samplesList.Count - 1) - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))
            OutputSample(CType(samplesList((i + 1)), CounterSample))


            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + _
            CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + _
            MyComputeCounterValue(CType(samplesList(i), CounterSample), CType(samplesList((i + 1)), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults




    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    '	PERF_COUNTER_COUNTER
    '	Description	 - This counter type shows the average number of operations completed
    '		during each second of the sample interval. Counters of this type
    '		measure time in ticks of the system clock. The F variable represents
    '		the number of ticks per second. The value of F is factored into the
    '		equation so that the result can be displayed in seconds.
    '
    '	Generic type - Difference
    '
    '	Formula - (N1 - N0) / ( (D1 - D0) / F), where the numerator (N) represents the number
    '		of operations performed during the last sample interval, the denominator
    '		(D) represents the number of ticks elapsed during the last sample
    '		interval, and F is the frequency of the ticks.
    '
    '	Average - (Nx - N0) / ((Dx - D0) / F) 
    '
    '  Example - System\ File Read Operations/sec 
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal s0 As CounterSample, ByVal s1 As CounterSample) As [Single]
        Dim numerator As [Single] = CType(s1.RawValue - s0.RawValue, [Single])
        Dim denomenator As [Single] = CType(s1.TimeStamp - s0.TimeStamp, [Single]) / CType(s1.SystemFrequency, [Single])
        Dim counterValue As [Single] = numerator / denomenator
        Return counterValue
    End Function 'MyComputeCounterValue


    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine(ControlChars.Lf + ControlChars.Cr + "+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'App

RawFraction

#using <System.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;
using namespace System::Diagnostics;

//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
// Formula from MSDN -
//      Description - This counter type shows the ratio of a subset to its set as a percentage.
//            For example, it compares the number of bytes in use on a disk to the
//            total number of bytes on the disk. Counters of this type display the 
//            current percentage only, not an average over time.
//
// Generic type - Instantaneous, Percentage 
//        Formula - (N0 / D0), where D represents a measured attribute and N represents one
//            component of that attribute.
//
//        Average - SUM (N / D) /x 
//        Example - Paging File\% Usage Peak
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
float MyComputeCounterValue( CounterSample rfSample )
{
   float numerator = (float)rfSample.RawValue;
   float denomenator = (float)rfSample.BaseValue;
   float counterValue = (numerator / denomenator) * 100;
   return counterValue;
}


// Output information about the counter sample.
void OutputSample( CounterSample s )
{
   Console::WriteLine( "+++++++++++" );
   Console::WriteLine( "Sample values - \r\n" );
   Console::WriteLine( "   BaseValue        = {0}", s.BaseValue );
   Console::WriteLine( "   CounterFrequency = {0}", s.CounterFrequency );
   Console::WriteLine( "   CounterTimeStamp = {0}", s.CounterTimeStamp );
   Console::WriteLine( "   CounterType      = {0}", s.CounterType );
   Console::WriteLine( "   RawValue         = {0}", s.RawValue );
   Console::WriteLine( "   SystemFrequency  = {0}", s.SystemFrequency );
   Console::WriteLine( "   TimeStamp        = {0}", s.TimeStamp );
   Console::WriteLine( "   TimeStamp100nSec = {0}", s.TimeStamp100nSec );
   Console::WriteLine( "++++++++++++++++++++++" );
}

bool SetupCategory()
{
   if (  !PerformanceCounterCategory::Exists( "RawFractionSampleCategory" ) )
   {
      CounterCreationDataCollection^ CCDC = gcnew CounterCreationDataCollection;
      
      // Add the counter.
      CounterCreationData^ rf = gcnew CounterCreationData;
      rf->CounterType = PerformanceCounterType::RawFraction;
      rf->CounterName = "RawFractionSample";
      CCDC->Add( rf );
      
      // Add the base counter.
      CounterCreationData^ rfBase = gcnew CounterCreationData;
      rfBase->CounterType = PerformanceCounterType::RawBase;
      rfBase->CounterName = "RawFractionSampleBase";
      CCDC->Add( rfBase );
      
      // Create the category.
      PerformanceCounterCategory::Create( "RawFractionSampleCategory", "Demonstrates usage of the RawFraction performance counter type.", CCDC );
      return true;
   }
   else
   {
      Console::WriteLine( "Category exists - RawFractionSampleCategory" );
      return false;
   }
}

void CreateCounters( PerformanceCounter^% PC, PerformanceCounter^% BPC )
{
   
   // Create the counters.
   PC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSample",false );
   BPC = gcnew PerformanceCounter( "RawFractionSampleCategory","RawFractionSampleBase",false );
   PC->RawValue = 0;
   BPC->RawValue = 0;
}

void CollectSamples( ArrayList^ samplesList, PerformanceCounter^ PC, PerformanceCounter^ BPC )
{
   Random^ r = gcnew Random( DateTime::Now.Millisecond );
   
   // Initialize the performance counter.
   PC->NextSample();
   
   // Loop for the samples.
   for ( int j = 0; j < 100; j++ )
   {
      int value = r->Next( 1, 10 );
      Console::Write( "{0} = {1}", j, value );
      
      // Increment the base every time, because the counter measures the number 
      // of high hits (raw fraction value) against all the hits (base value).
      BPC->Increment();
      
      // Get the % of samples that are 9 or 10 out of all the samples taken.
      if ( value >= 9 )
            PC->Increment();
      
      // Copy out the next value every ten times around the loop.
      if ( (j % 10) == 9 )
      {
         Console::WriteLine( ";       NextValue() = {0}", PC->NextValue() );
         OutputSample( PC->NextSample() );
         samplesList->Add( PC->NextSample() );
      }
      else
            Console::WriteLine();
      System::Threading::Thread::Sleep( 50 );

   }
}

void CalculateResults( ArrayList^ samplesList )
{
   for ( int i = 0; i < samplesList->Count; i++ )
   {
      
      // Output the sample.
      OutputSample(  *safe_cast<CounterSample^>(samplesList[ i ]) );
      
      // Use .NET to calculate the counter value.
      Console::WriteLine( ".NET computed counter value = {0}", CounterSampleCalculator::ComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );
      
      // Calculate the counter value manually.
      Console::WriteLine( "My computed counter value = {0}", MyComputeCounterValue(  *safe_cast<CounterSample^>(samplesList[ i ]) ) );

   }
}

int main()
{
   ArrayList^ samplesList = gcnew ArrayList;
   PerformanceCounter^ PC;
   PerformanceCounter^ BPC;
   SetupCategory();
   CreateCounters( PC, BPC );
   CollectSamples( samplesList, PC, BPC );
   CalculateResults( samplesList );
}

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;


public class App
{
    private static PerformanceCounter PC;
    private static PerformanceCounter BPC;

    public static void Main()
    {
        ArrayList samplesList = new ArrayList();

        // If the category does not exist, create the category and exit.
        // Performance counters should not be created and immediately used.
        // There is a latency time to enable the counters, they should be created
        // prior to executing the application that uses the counters.
        // Execute this sample a second time to use the counters.
        if (SetupCategory())
            return;
        CreateCounters();
        CollectSamples(samplesList);
        CalculateResults(samplesList);
    }

    private static bool SetupCategory()
    {


        if (!PerformanceCounterCategory.Exists("RawFractionSampleCategory"))
        {


            CounterCreationDataCollection CCDC = new CounterCreationDataCollection();

            // Add the counter.
            CounterCreationData rf = new CounterCreationData();
            rf.CounterType = PerformanceCounterType.RawFraction;
            rf.CounterName = "RawFractionSample";
            CCDC.Add(rf);

            // Add the base counter.
            CounterCreationData rfBase = new CounterCreationData();
            rfBase.CounterType = PerformanceCounterType.RawBase;
            rfBase.CounterName = "RawFractionSampleBase";
            CCDC.Add(rfBase);

            // Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory",
                "Demonstrates usage of the RawFraction performance counter type.",
                PerformanceCounterCategoryType.SingleInstance, CCDC);

            return (true);
        }
        else
        {
            Console.WriteLine("Category exists - RawFractionSampleCategory");
            return (false);
        }
    }

    private static void CreateCounters()
    {
        // Create the counters.
        PC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSample",
            false);

        BPC = new PerformanceCounter("RawFractionSampleCategory",
            "RawFractionSampleBase",
            false);

        PC.RawValue = 0;
        BPC.RawValue = 0;
    }

    private static void CollectSamples(ArrayList samplesList)
    {

        Random r = new Random(DateTime.Now.Millisecond);

        // Initialize the performance counter.
        PC.NextSample();

        // Loop for the samples.
        for (int j = 0; j < 100; j++)
        {
            int value = r.Next(1, 10);
            Console.Write(j + " = " + value);

            // Increment the base every time, because the counter measures the number 
            // of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment();

            // Get the % of samples that are 9 or 10 out of all the samples taken.
            if (value >= 9)
                PC.Increment();

            // Copy out the next value every ten times around the loop.
            if ((j % 10) == 9)
            {
                Console.WriteLine(";       NextValue() = " + PC.NextValue().ToString());
                OutputSample(PC.NextSample());
                samplesList.Add(PC.NextSample());
            }
            else
                Console.WriteLine();

            System.Threading.Thread.Sleep(50);
        }

    }


    private static void CalculateResults(ArrayList samplesList)
    {
        for (int i = 0; i < samplesList.Count; i++)
        {
            // Output the sample.
            OutputSample((CounterSample)samplesList[i]);

            // Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " +
                CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i]));

            // Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " +
                MyComputeCounterValue((CounterSample)samplesList[i]));

        }
    }

    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    // Formula from MSDN -
    //      Description - This counter type shows the ratio of a subset to its set as a percentage.
    //			For example, it compares the number of bytes in use on a disk to the
    //			total number of bytes on the disk. Counters of this type display the 
    //			current percentage only, not an average over time.
    //
    // Generic type - Instantaneous, Percentage 
    //	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    //			component of that attribute.
    //
    //		Average - SUM (N / D) /x 
    //		Example - Paging File\% Usage Peak
    //++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    private static Single MyComputeCounterValue(CounterSample rfSample)
    {
        Single numerator = (Single)rfSample.RawValue;
        Single denomenator = (Single)rfSample.BaseValue;
        Single counterValue = (numerator / denomenator) * 100;
        return (counterValue);
    }

    // Output information about the counter sample.
    private static void OutputSample(CounterSample s)
    {
        Console.WriteLine("+++++++++++");
        Console.WriteLine("Sample values - \r\n");
        Console.WriteLine("   BaseValue        = " + s.BaseValue);
        Console.WriteLine("   CounterFrequency = " + s.CounterFrequency);
        Console.WriteLine("   CounterTimeStamp = " + s.CounterTimeStamp);
        Console.WriteLine("   CounterType      = " + s.CounterType);
        Console.WriteLine("   RawValue         = " + s.RawValue);
        Console.WriteLine("   SystemFrequency  = " + s.SystemFrequency);
        Console.WriteLine("   TimeStamp        = " + s.TimeStamp);
        Console.WriteLine("   TimeStamp100nSec = " + s.TimeStamp100nSec);
        Console.WriteLine("++++++++++++++++++++++");
    }



}

Imports System
Imports System.Collections
Imports System.Collections.Specialized
Imports System.Diagnostics

 _


Public Class App
    Private Shared PC As PerformanceCounter
    Private Shared BPC As PerformanceCounter


    Public Shared Sub Main()
        Dim samplesList As New ArrayList()

        'If the category does not exist, create the category and exit.
        'Performance counters should not be created and immediately used.
        'There is a latency time to enable the counters, they should be created
        'prior to executing the application that uses the counters.
        'Execute this sample a second time to use the counters.
        If Not (SetupCategory()) Then
            CreateCounters()
            CollectSamples(samplesList)
            CalculateResults(samplesList)
        End If

    End Sub 'Main


    Private Shared Function SetupCategory() As Boolean


        If Not PerformanceCounterCategory.Exists("RawFractionSampleCategory") Then


            Dim CCDC As New CounterCreationDataCollection()

            ' Add the counter.
            Dim rf As New CounterCreationData()
            rf.CounterType = PerformanceCounterType.RawFraction
            rf.CounterName = "RawFractionSample"
            CCDC.Add(rf)

            ' Add the base counter.
            Dim rfBase As New CounterCreationData()
            rfBase.CounterType = PerformanceCounterType.RawBase
            rfBase.CounterName = "RawFractionSampleBase"
            CCDC.Add(rfBase)

            ' Create the category.
            PerformanceCounterCategory.Create("RawFractionSampleCategory", _
            "Demonstrates usage of the RawFraction performance counter type.", _
                PerformanceCounterCategoryType.SingleInstance, CCDC)

            Return True
        Else
            Console.WriteLine("Category exists - RawFractionSampleCategory")
            Return False
        End If
    End Function 'SetupCategory


    Private Shared Sub CreateCounters()
        ' Create the counters.
        PC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSample", False)

        BPC = New PerformanceCounter("RawFractionSampleCategory", "RawFractionSampleBase", False)

        PC.RawValue = 0
        BPC.RawValue = 0
    End Sub 'CreateCounters


    Private Shared Sub CollectSamples(ByVal samplesList As ArrayList)

        Dim r As New Random(DateTime.Now.Millisecond)

        ' Initialize the performance counter.
        PC.NextSample()

        ' Loop for the samples.
        Dim j As Integer
        For j = 0 To 99
            Dim value As Integer = r.Next(1, 10)
            Console.Write((j.ToString() + " = " + value.ToString()))

            ' Increment the base every time, because the counter measures the number 
            ' of high hits (raw fraction value) against all the hits (base value).
            BPC.Increment()

            ' Get the % of samples that are 9 or 10 out of all the samples taken.
            If value >= 9 Then
                PC.Increment()
            End If
            ' Copy out the next value every ten times around the loop.
            If j Mod 10 = 9 Then
                Console.WriteLine((";       NextValue() = " + PC.NextValue().ToString()))
                OutputSample(PC.NextSample())
                samplesList.Add(PC.NextSample())
            Else
                Console.WriteLine()
            End If
            System.Threading.Thread.Sleep(50)
        Next j
    End Sub 'CollectSamples



    Private Shared Sub CalculateResults(ByVal samplesList As ArrayList)
        Dim i As Integer
        For i = 0 To samplesList.Count - 1
            ' Output the sample.
            OutputSample(CType(samplesList(i), CounterSample))

            ' Use .NET to calculate the counter value.
            Console.WriteLine(".NET computed counter value = " + CounterSampleCalculator.ComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())

            ' Calculate the counter value manually.
            Console.WriteLine("My computed counter value = " + MyComputeCounterValue(CType(samplesList(i), CounterSample)).ToString())
        Next i
    End Sub 'CalculateResults


    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    ' Formula from MSDN -
    '      Description - This counter type shows the ratio of a subset to its set as a percentage.
    '			For example, it compares the number of bytes in use on a disk to the
    '			total number of bytes on the disk. Counters of this type display the 
    '			current percentage only, not an average over time.
    '
    ' Generic type - Instantaneous, Percentage 
    '	    Formula - (N0 / D0), where D represents a measured attribute and N represents one
    '			component of that attribute.
    '
    '		Average - SUM (N / D) /x 
    '		Example - Paging File\% Usage Peak
    '++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
    Private Shared Function MyComputeCounterValue(ByVal rfSample As CounterSample) As [Single]
        Dim numerator As [Single] = CType(rfSample.RawValue, [Single])
        Dim denomenator As [Single] = CType(rfSample.BaseValue, [Single])
        Dim counterValue As [Single] = numerator / denomenator * 100
        Return counterValue
    End Function 'MyComputeCounterValue


    ' Output information about the counter sample.
    Private Shared Sub OutputSample(ByVal s As CounterSample)
        Console.WriteLine("+++++++++++")
        Console.WriteLine("Sample values - " + ControlChars.Lf + ControlChars.Cr)
        Console.WriteLine(("   BaseValue        = " + s.BaseValue.ToString()))
        Console.WriteLine(("   CounterFrequency = " + s.CounterFrequency.ToString()))
        Console.WriteLine(("   CounterTimeStamp = " + s.CounterTimeStamp.ToString()))
        Console.WriteLine(("   CounterType      = " + s.CounterType.ToString()))
        Console.WriteLine(("   RawValue         = " + s.RawValue.ToString()))
        Console.WriteLine(("   SystemFrequency  = " + s.SystemFrequency.ToString()))
        Console.WriteLine(("   TimeStamp        = " + s.TimeStamp.ToString()))
        Console.WriteLine(("   TimeStamp100nSec = " + s.TimeStamp100nSec.ToString()))
        Console.WriteLine("++++++++++++++++++++++")
    End Sub 'OutputSample
End Class 'App 



Comentarios

Algunos tipos de contador representan datos sin procesar, mientras que otros representan valores calculados que se basan en una o varias muestras del contador.Some counter types represent raw data, while others represent calculated values that are based on one or more counter samples. Las siguientes categorías de clasifican los tipos de contadores disponibles.The following categories classify the types of counters available.

  • Average: Mide un valor con el tiempo y muestra el promedio de las dos últimas mediciones.Average: Measures a value over time and displays the average of the last two measurements. Asociado con cada contador de promedio es un contador base que registra el número de muestras utilizadas.Associated with each average counter is a base counter that tracks the number of samples involved.

  • Diferencia: Resta la última medida de la anterior y muestra la diferencia, si es positivo; Si es negativo, muestra un cero.Difference: Subtracts the last measurement from the previous one and displays the difference, if it is positive; if negative, it displays a zero.

  • Instantánea: Muestra la medición más reciente.Instantaneous: Displays the most recent measurement.

  • Porcentaje: Muestra los valores calculados como un porcentaje.Percentage: Displays calculated values as a percentage.

  • Tasa de: Muestrea un número creciente de eventos con el tiempo y divide el cambio en los valores de recuento por el cambio en el tiempo para mostrar una tasa de actividad.Rate: Samples an increasing count of events over time and divides the change in count values by the change in time to display a rate of activity.

Al muestreo de datos del contador de rendimiento, utilizar un tipo de contador que representa un promedio puede hacer que los valores de datos sin formato significativo para su uso.When sampling performance counter data, using a counter type that represents an average can make raw data values meaningful for your use. Por ejemplo, el contador de datos sin procesar NumberOfItems64 puede exponer datos que sean muy aleatorios de una muestra.For example, the raw data counter NumberOfItems64 can expose data that is fairly random from sample to sample. La fórmula para calcular el promedio de los valores que el contador devuelve sería (X 0 + 1 +... + X n) / n, donde cada X i es un ejemplo de contador sin formato.The formula for an average calculation of the values that the counter returns would be (X 0 +X 1 +…+X n)/n, where each X i is a raw counter sample.

Contadores de velocidad son similares a los contadores de promedio, pero más útiles en situaciones en que la velocidad aumenta a medida que se usa un recurso.Rate counters are similar to average counters, but more useful for situations in which the rate increases as a resource is used. Es una fórmula que calcula el promedio de rápidamente ((X n -X 0) / T n -T (0)) / frecuencia, donde cada X i es un ejemplo de contador y cada T i es el tiempo que se tomó la muestra correspondiente.A formula that quickly calculates the average is ((X n -X 0)/(T n -T 0)) / frequency, where each X i is a counter sample and each T i is the time that the corresponding sample was taken. El resultado es el promedio de uso por segundo.The result is the average usage per second.

Contadores multitimer recopilar datos de más de una instancia de un componente, como un procesador o disco.Multitimer counters collect data from more than one instance of a component, such as a processor or disk.

Los contadores inversos miden el tiempo que un componente no está activo y derivan su tiempo activo de dicha medición.Inverse counters measure the time that a component is not active and derive the active time from that measurement.

Nota

A menos que se indique lo contrario, la base de tiempo es segundos.Unless otherwise indicated, the time base is seconds.

Al instrumentar aplicaciones (crear y escribir los contadores de rendimiento personalizados), puede que esté trabajando con tipos de contador de rendimiento que se basan en un contador base complementario que se usa en los cálculos.When instrumenting applications (creating and writing custom performance counters), you might be working with performance counter types that rely on an accompanying base counter that is used in the calculations. El contador base debe ser inmediatamente después del contador asociado en el CounterCreationDataCollection colección utiliza la aplicación.The base counter must be immediately after its associated counter in the CounterCreationDataCollection collection your application uses. En la tabla siguiente se enumera los tipos de contador base con sus correspondientes tipos de contador de rendimiento.The following table lists the base counter types with their corresponding performance counter types.

Tipo de contador baseBase counter type Tipos de contador de rendimientoPerformance counter types
AverageBase AverageTimer32

AverageCount64
CounterMultiBase CounterMultiTimer

CounterMultiTimerInverse

CounterMultiTimer100Ns

CounterMultiTimer100NsInverse
RawBase RawFraction
SampleBase SampleFraction

Estas son las fórmulas que utilizan algunos de los contadores que representan valores calculados:The following are the formulas used by some of the counters that represent calculated values:

  • AverageCount64: (N1 - N0) /(B1-B0), donde N 1 y N 0 son lecturas del contador de rendimiento y B1 y B0 son sus correspondientes AverageBase valores.AverageCount64: (N1 - N0)/(B1 - B0), where N 1 and N 0 are performance counter readings, and B1 and B0 are their corresponding AverageBase values. Por lo tanto, el numerador representa el número de elementos procesados durante el intervalo de muestra y el denominador representa el número de operaciones completadas durante el intervalo de muestra.Thus, the numerator represents the numbers of items processed during the sample interval, and the denominator represents the number of operations completed during the sample interval.

  • AverageTimer32: ((N1 - N0) / f) /(B1-B0), donde N1 y N0 son lecturas del contador de rendimiento, B1 y B0 son sus correspondientes AverageBase valores y F es el número de tics por segundo.AverageTimer32: ((N1 - N0)/F)/(B1 - B0), where N1 and N0 are performance counter readings, B1 and B0 are their corresponding AverageBase values, and F is the number of ticks per second. El valor de F se calcula en la ecuación para que el resultado puede mostrarse en segundos.The value of F is factored into the equation so that the result can be displayed in seconds. Por lo tanto, el numerador representa el número de pasos contados durante el último intervalo de muestra, F representa la frecuencia de las marcas de paso y el denominador representa el número de operaciones completadas durante el último intervalo de muestra.Thus, the numerator represents the numbers of ticks counted during the last sample interval, F represents the frequency of the ticks, and the denominator represents the number of operations completed during the last sample interval.

  • CounterDelta32: N1 - N0, donde N1 y N0 son lecturas del contador de rendimiento.CounterDelta32: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterDelta64: N1 - N0, donde N1 y N0 son lecturas del contador de rendimiento.CounterDelta64: N1 - N0, where N1 and N0 are performance counter readings.

  • CounterMultiTimer: ((N1 - N0) / (D1 - D0)) x 100 / B, donde N1 y N0 son lecturas del contador de rendimiento, D1 y D0 son las lecturas de tiempo correspondientes en tics del temporizador de rendimiento del sistema y la variable B denota el número de base para los componentes supervisados (mediante un contador base de ty PE CounterMultiBase).CounterMultiTimer: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in ticks of the system performance timer, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). Por lo tanto, el numerador representa las partes del intervalo de muestra durante el cual los componentes supervisados estaban activos y el denominador representa el tiempo total transcurrido del intervalo de muestra.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100Ns: ((N1 - N0) / (D1 - D0)) x 100 / B, donde N1 y N0 son las lecturas del contador de rendimiento, D1 y D0 son las lecturas de tiempo correspondientes en unidades de 100 nanosegundos y la variable B denota el número de base para los componentes supervisados (utilizando un contador base del tipo CounterMultiBase).CounterMultiTimer100Ns: ((N1 - N0) / (D1 - D0)) x 100 / B, where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings in 100-nanosecond units, and the variable B denotes the base count for the monitored components (using a base counter of type CounterMultiBase). Por lo tanto, el numerador representa las partes del intervalo de muestra durante el cual los componentes supervisados estaban activos y el denominador representa el tiempo total transcurrido del intervalo de muestra.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterMultiTimer100NsInverse: (B - ((N1-N0) / (D1 - D0))) x 100, donde el denominador representa el tiempo total transcurrido del intervalo de muestra, el numerador representa el tiempo durante el intervalo cuando estaban inactivos los componentes supervisados, y B representa el número de componentes que se está supervisando , usando un contador base del tipo CounterMultiBase.CounterMultiTimer100NsInverse: (B - ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterMultiTimerInverse: (B - ((N1-N0) / (D1 - D0))) x 100, donde el denominador representa el tiempo total transcurrido del intervalo de muestra, el numerador representa el tiempo durante el intervalo cuando estaban inactivos los componentes supervisados, y B representa el número de componentes que se está supervisando , usando un contador base del tipo CounterMultiBase.CounterMultiTimerInverse: (B- ((N1 - N0) / (D1 - D0))) x 100, where the denominator represents the total elapsed time of the sample interval, the numerator represents the time during the interval when monitored components were inactive, and B represents the number of components being monitored, using a base counter of type CounterMultiBase.

  • CounterTimer: (N1 - N0) / (D1 - D0), donde N1 y N0 son lecturas del contador de rendimiento y D1 y D0 son las lecturas de tiempo correspondientes.CounterTimer: (N1 - N0) / (D1 - D0), where N1 and N0 are performance counter readings, and D1 and D0 are their corresponding time readings. Por lo tanto, el numerador representa las partes del intervalo de muestra durante el cual los componentes supervisados estaban activos y el denominador representa el tiempo total transcurrido del intervalo de muestra.Thus, the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • CounterTimerInverse: (1 - ((N1-N0) / (D1 - D0))) x 100, donde el numerador representa el tiempo durante el intervalo de los componentes supervisados estuvieron inactivos, y el denominador representa el tiempo total transcurrido del intervalo de muestra.CounterTimerInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

  • CountPerTimeInterval32: (N1 - N0) / (D1 - D0), donde el numerador representa el número de elementos de la cola y el denominador representa el tiempo transcurrido durante el último intervalo de muestra.CountPerTimeInterval32: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in the queue, and the denominator represents the time elapsed during the last sample interval.

  • CountPerTimeInterval64: (N1 - N0) / (D1 - D0), donde el numerador representa el número de elementos de una cola y el denominador representa el tiempo transcurrido durante el intervalo de muestra.CountPerTimeInterval64: (N1 - N0) / (D1 - D0), where the numerator represents the number of items in a queue and the denominator represents the time elapsed during the sample interval.

  • ElapsedTime: (D0 - N0) / F, donde D0 representa la hora actual, N0 representa la hora en que se inició el objeto y F representa el número de unidades de tiempo que transcurren en un segundo.ElapsedTime: (D0 - N0) / F, where D0 represents the current time, N0 represents the time the object was started, and F represents the number of time units that elapse in one second. El valor de F se calcula en la ecuación para que el resultado puede mostrarse en segundos.The value of F is factored into the equation so that the result can be displayed in seconds.

  • NumberOfItems32: Ninguno.NumberOfItems32: None. No se muestra un promedio, pero muestra los datos sin procesar tal y como se recopila.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItems64: Ninguno.NumberOfItems64: None. No se muestra un promedio, pero muestra los datos sin procesar tal y como se recopila.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX32: Ninguno.NumberOfItemsHEX32: None. No se muestra un promedio, pero muestra los datos sin procesar tal y como se recopila.Does not display an average, but shows the raw data as it is collected.

  • NumberOfItemsHEX64: Ninguno.NumberOfItemsHEX64: None. No se muestra un promedio, pero muestra los datos sin procesar tal y como se recopilaDoes not display an average, but shows the raw data as it is collected

  • RateOfCountsPerSecond32: (N1 - N0) / ((D1-D0) / F), donde N1 y N0 son lecturas del contador de rendimiento, D1 y D0 son las lecturas de tiempo correspondientes y F representa el número de tics por segundo.RateOfCountsPerSecond32: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. Por lo tanto, el numerador representa el número de operaciones realizadas durante el último intervalo de muestra, el denominador representa el número de tics transcurridos durante el último intervalo de muestra y F representa la frecuencia de las marcas de paso.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. El valor de F se calcula en la ecuación para que el resultado puede mostrarse en segundos.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RateOfCountsPerSecond64: (N1 - N0) / ((D1-D0) / F), donde N1 y N0 son lecturas del contador de rendimiento, D1 y D0 son las lecturas de tiempo correspondientes y F representa el número de tics por segundo.RateOfCountsPerSecond64: (N1 - N0) / ((D1 - D0) / F), where N1 and N0 are performance counter readings, D1 and D0 are their corresponding time readings, and F represents the number of ticks per second. Por lo tanto, el numerador representa el número de operaciones realizadas durante el último intervalo de muestra, el denominador representa el número de tics transcurridos durante el último intervalo de muestra y F representa la frecuencia de las marcas de paso.Thus, the numerator represents the number of operations performed during the last sample interval, the denominator represents the number of ticks elapsed during the last sample interval, and F is the frequency of the ticks. El valor de F se calcula en la ecuación para que el resultado puede mostrarse en segundos.The value of F is factored into the equation so that the result can be displayed in seconds.

  • RawFraction: (N0 / D0) x 100, donde D0 representa un atributo medido (usando un contador base del tipo RawBase) y N0 representa un componente de ese atributo.RawFraction: (N0 / D0) x 100, where D0 represents a measured attribute (using a base counter of type RawBase) and N0 represents one component of that attribute.

  • SampleCounter: (N1 - N0) / ((D1-D0) / F), donde el numerador (N) representa el número de operaciones completadas, el denominador (D) representa el tiempo transcurrido en unidades de pasos del contador de rendimiento del sistema y F representa el número de tics que transcurren en un segundo.SampleCounter: (N1 - N0) / ((D1 - D0) / F), where the numerator (N) represents the number of operations completed, the denominator (D) represents elapsed time in units of ticks of the system performance timer, and F represents the number of ticks that elapse in one second. F se calcula en la ecuación para que el resultado puede mostrarse en segundos.F is factored into the equation so that the result can be displayed in seconds.

  • SampleFraction: ((N1 - N0) / (D1 - D0)) x 100, donde el numerador representa el número de operaciones correctas durante el último intervalo de muestra y el denominador representa el cambio en el número de todas las operaciones (del tipo medido) ha completado durante el intervalo de muestra, uso de contadores de tipo SampleBase.SampleFraction: ((N1 - N0) / (D1 - D0)) x 100, where the numerator represents the number of successful operations during the last sample interval, and the denominator represents the change in the number of all operations (of the type measured) completed during the sample interval, using counters of type SampleBase.

  • Timer100Ns: (N1 - N0) / (D1 - D0) x 100, donde el numerador representa las partes del intervalo de muestra durante el cual los componentes supervisados estaban activos, y el denominador representa el tiempo total transcurrido del intervalo de muestra.Timer100Ns: (N1 - N0) / (D1 - D0) x 100, where the numerator represents the portions of the sample interval during which the monitored components were active, and the denominator represents the total elapsed time of the sample interval.

  • Timer100NsInverse: (1 - ((N1-N0) / (D1 - D0))) x 100, donde el numerador representa el tiempo durante el intervalo de los componentes supervisados estuvieron inactivos, y el denominador representa el tiempo total transcurrido del intervalo de muestra.Timer100NsInverse: (1- ((N1 - N0) / (D1 - D0))) x 100, where the numerator represents the time during the interval when the monitored components were inactive, and the denominator represents the total elapsed time of the sample interval.

Se aplica a

Consulte también: