Fonctions définies par l’utilisateur (UDF) scalaires

Les fonctions scalaires définies par l’utilisateur sont des routines programmables par l’utilisateur qui agissent sur une ligne. Cette documentation répertorie les classes requises pour créer et inscrire des fonctions définies par l’utilisateur. Il contient également des exemples qui montrent comment définir et enregistrer des fonctions définies par l’utilisateur et les appeler dans Spark SQL.

Classe UserDefinedFunction

Pour définir les propriétés d’une fonction définie par l’utilisateur, vous pouvez utiliser certaines des méthodes définies dans cette classe.

  • asNonNullable () : UserDefinedFunction: met à jour vers non Nullable.
  • asNondeterministic () : UserDefinedFunction: met à jour vers non déterministe.
  • withName (nom : chaîne) : UserDefinedFunction: met à jour avec un nom donné.

Exemples

Scala

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf

val spark = SparkSession
      .builder()
      .appName("Spark SQL UDF scalar example")
      .getOrCreate()

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
val random = udf(() => Math.random())
spark.udf.register("random", random.asNondeterministic())
spark.sql("SELECT random()").show()
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
val plusOne = udf((x: Int) => x + 1)
spark.udf.register("plusOne", plusOne)
spark.sql("SELECT plusOne(5)").show()
// +------+
// |UDF(5)|
// +------+
// |     6|
// +------+

// Define a two-argument UDF and register it with Spark in one step
spark.udf.register("strLenScala", (_: String).length + (_: Int))
spark.sql("SELECT strLenScala('test', 1)").show()
// +--------------------+
// |strLenScala(test, 1)|
// +--------------------+
// |                   5|
// +--------------------+

// UDF in a WHERE clause
spark.udf.register("oneArgFilter", (n: Int) => { n > 5 })
spark.range(1, 10).createOrReplaceTempView("test")
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show()
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+

Java

import org.apache.spark.sql.*;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.expressions.UserDefinedFunction;
import static org.apache.spark.sql.functions.udf;
import org.apache.spark.sql.types.DataTypes;

SparkSession spark = SparkSession
      .builder()
      .appName("Java Spark SQL UDF scalar example")
      .getOrCreate();

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
UserDefinedFunction random = udf(
  () -> Math.random(), DataTypes.DoubleType
);
random.asNondeterministic();
spark.udf().register("random", random);
spark.sql("SELECT random()").show();
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
spark.udf().register("plusOne", new UDF1<Integer, Integer>() {
  @Override
  public Integer call(Integer x) {
    return x + 1;
  }
}, DataTypes.IntegerType);
spark.sql("SELECT plusOne(5)").show();
// +----------+
// |plusOne(5)|
// +----------+
// |         6|
// +----------+

// Define and register a two-argument UDF
UserDefinedFunction strLen = udf(
  (String s, Integer x) -> s.length() + x, DataTypes.IntegerType
);
spark.udf().register("strLen", strLen);
spark.sql("SELECT strLen('test', 1)").show();
// +------------+
// |UDF(test, 1)|
// +------------+
// |           5|
// +------------+

// UDF in a WHERE clause
spark.udf().register("oneArgFilter", new UDF1<Long, Boolean>() {
  @Override
  public Boolean call(Long x) {
    return  x > 5;
  }
}, DataTypes.BooleanType);
spark.range(1, 10).createOrReplaceTempView("test");
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show();
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+