Share via


Comment : définir et exécuter des méthodes dynamiques

Mise à jour : novembre 2007

Les procédures suivantes montrent comment définir et exécuter une méthode dynamique simple et une méthode dynamique liée à une instance d'une classe. Pour plus d'informations sur les méthodes dynamiques, consultez la classe DynamicMethod et Scénarios de méthodes dynamiques avec émission de réflexion.

Pour définir et exécuter une méthode dynamique

  1. Déclarez un type délégué pour exécuter la méthode. Envisagez d'utiliser un délégué générique pour réduire le nombre de types délégués que vous devez déclarer. Le code suivant déclare deux types délégués qui peuvent être utilisés pour la méthode SquareIt, et l'un d'eux est générique.

    Private Delegate Function _
        SquareItInvoker(ByVal input As Integer) As Long 
    
    Private Delegate Function _
        OneParameter(Of TReturn, TParameter0) _
        (ByVal p0 As TParameter0) As TReturn 
    
    private delegate long SquareItInvoker(int input);
    
    private delegate TReturn OneParameter<TReturn, TParameter0>
        (TParameter0 p0);
    
    private: 
        delegate long long SquareItInvoker(int input);
    
        generic<typename TReturn, typename TParameter0> 
            delegate TReturn OneParameter(TParameter0 p0);
    
  2. Créez un tableau qui spécifie les types de paramètre pour la méthode dynamique. Dans cet exemple, comme le seul paramètre est un type int (Integer en Visual Basic), le tableau ne possède qu'un seul élément.

    Dim methodArgs As Type() = { GetType(Integer) }
    
    Type[] methodArgs = {typeof(int)};
    
    array<Type^>^ methodArgs = { int::typeid };
    
  3. Créez un DynamicMethod. Dans cet exemple, la méthode est appelée SquareIt.

    Remarque :

    Il n'est pas nécessaire de donner des noms aux méthodes dynamiques et elles ne peuvent pas être appelées par leur nom. Plusieurs méthodes dynamiques peuvent avoir le même nom. Toutefois, le nom apparaît dans les piles des appels et peut être utile pour le débogage.

    Le type de la valeur de retour est spécifié en tant que long. La méthode est associée au module qui contient la classe Example, laquelle comprend l'exemple de code. Il est possible de spécifier n'importe quel module chargé. La méthode dynamique agit comme une méthode static (Shared en Visual Basic) de niveau module.

    Dim squareIt As New DynamicMethod( _
        "SquareIt", _
        GetType(Long), _
        methodArgs, _
        GetType(Example).Module)
    
    DynamicMethod squareIt = new DynamicMethod(
        "SquareIt", 
        typeof(long), 
        methodArgs, 
        typeof(Example).Module);
    
    DynamicMethod^ squareIt = gcnew DynamicMethod(
        "SquareIt", 
        long long::typeid, 
        methodArgs, 
        Example::typeid->Module);
    
  4. Émettez le corps de la méthode. Dans cet exemple, un objet ILGenerator est utilisé pour émettre le code en langage MSIL (Microsoft Intermediate Language). Il est également possible d'utiliser un objet DynamicILInfo conjointement à des générateurs de code non managé pour émettre le corps de la méthode de l'objet DynamicMethod.

    Le code MSIL de cet exemple charge l'argument, un nombre de type int, sur la pile, le convertit en type long, duplique le nombre de type long et multiplie les deux nombres. Le carré obtenu est laissé sur la pile et la méthode n'a plus qu'à le retourner.

    Dim il As ILGenerator = squareIt.GetILGenerator()
    il.Emit(OpCodes.Ldarg_0)
    il.Emit(OpCodes.Conv_I8)
    il.Emit(OpCodes.Dup)
    il.Emit(OpCodes.Mul)
    il.Emit(OpCodes.Ret)
    
    ILGenerator il = squareIt.GetILGenerator();
    il.Emit(OpCodes.Ldarg_0);
    il.Emit(OpCodes.Conv_I8);
    il.Emit(OpCodes.Dup);
    il.Emit(OpCodes.Mul);
    il.Emit(OpCodes.Ret);
    
    ILGenerator^ il = squareIt->GetILGenerator();
    il->Emit(OpCodes::Ldarg_0);
    il->Emit(OpCodes::Conv_I8);
    il->Emit(OpCodes::Dup);
    il->Emit(OpCodes::Mul);
    il->Emit(OpCodes::Ret);
    
  5. Créez une instance du délégué (déclaré dans l'étape 1) qui représente la méthode dynamique en appelant la méthode CreateDelegate. La création du délégué achève la méthode et toute tentative supplémentaire de modification de la méthode, par exemple l'ajout de code MSIL, est ignorée. Le code suivant crée le délégué et l'appelle, à l'aide d'un délégué générique.

    Dim invokeSquareIt As OneParameter(Of Long, Integer) = _
        CType( _
            squareIt.CreateDelegate( _
                GetType(OneParameter(Of Long, Integer))), _
            OneParameter(Of Long, Integer) _
        )
    
    Console.WriteLine("123456789 squared = {0}", _ 
        invokeSquareIt(123456789))
    
    OneParameter<long, int> invokeSquareIt = 
        (OneParameter<long, int>)
        squareIt.CreateDelegate(typeof(OneParameter<long, int>));
    
    Console.WriteLine("123456789 squared = {0}",
        invokeSquareIt(123456789));
    
    OneParameter<long long, int>^ invokeSquareIt = 
        (OneParameter<long long, int>^)
        squareIt->CreateDelegate(OneParameter<long long, int>::typeid);
    
    Console::WriteLine("123456789 squared = {0}",
        invokeSquareIt(123456789));
    

Pour définir et exécuter une méthode dynamique liée à un objet

  1. Déclarez un type délégué pour exécuter la méthode. Envisagez d'utiliser un délégué générique pour réduire le nombre de types délégués que vous devez déclarer. Le code suivant déclare un type délégué générique qui peut être utilisé pour exécuter n'importe quelle méthode avec un seul paramètre et une valeur de retour ou une méthode avec deux paramètres et une valeur de retour si le délégué est lié à un objet.

    Private Delegate Function _
        OneParameter(Of TReturn, TParameter0) _
        (ByVal p0 As TParameter0) As TReturn 
    
    private delegate TReturn OneParameter<TReturn, TParameter0>
        (TParameter0 p0);
    
    generic<typename TReturn, typename TParameter0> 
        delegate TReturn OneParameter(TParameter0 p0);
    
  2. Créez un tableau qui spécifie les types de paramètre pour la méthode dynamique. Si le délégué qui représente la méthode doit être lié à un objet, le premier paramètre doit correspondre au type auquel le délégué est lié. Cet exemple comporte deux paramètres, de type Example et de type int (Integer en Visual Basic).

    Dim methodArgs2 As Type() = _
        { GetType(Example), GetType(Integer) }
    
    Type[] methodArgs2 = { typeof(Example), typeof(int) };
    
    array<Type^>^ methodArgs2 = { Example::typeid, int::typeid };
    
  3. Créez un DynamicMethod. Dans cet exemple, la méthode n'a pas de nom. Le type de la valeur de retour est spécifié en tant que int (Integer en Visual Basic). La méthode a accès aux membres privés et protégés de la classe Example.

    Dim multiplyPrivate As New DynamicMethod( _
        "", _
        GetType(Integer), _
        methodArgs2, _
        GetType(Example))
    
    DynamicMethod multiplyHidden = new DynamicMethod(
        "", 
        typeof(int), 
        methodArgs2, 
        typeof(Example));
    
    DynamicMethod^ multiplyHidden = gcnew DynamicMethod(
        "", 
        int::typeid, 
        methodArgs2, 
        Example::typeid);
    
  4. Émettez le corps de la méthode. Dans cet exemple, un objet ILGenerator est utilisé pour émettre le code en langage MSIL (Microsoft Intermediate Language). Il est également possible d'utiliser un objet DynamicILInfo conjointement à des générateurs de code non managé pour émettre le corps de la méthode de l'objet DynamicMethod.

    Le code MSIL de cet exemple charge le premier argument, qui est une instance de la classe Example et l'utilise pour charger la valeur d'un champ d'instance privée de type int. Le deuxième argument est chargé, et les deux nombres sont multipliés. Si le résultat est supérieur à int, la valeur est tronquée et les bits les plus significatifs sont ignorés. La méthode est retournée, avec la valeur de retour sur la pile.

    Dim ilMP As ILGenerator = multiplyPrivate.GetILGenerator()
    ilMP.Emit(OpCodes.Ldarg_0)
    
    Dim testInfo As FieldInfo = _
        GetType(Example).GetField("test", _
            BindingFlags.NonPublic Or BindingFlags.Instance)
    
    ilMP.Emit(OpCodes.Ldfld, testInfo)
    ilMP.Emit(OpCodes.Ldarg_1)
    ilMP.Emit(OpCodes.Mul)
    ilMP.Emit(OpCodes.Ret)
    
    ILGenerator ilMH = multiplyHidden.GetILGenerator();
    ilMH.Emit(OpCodes.Ldarg_0);
    
    FieldInfo testInfo = typeof(Example).GetField("test",
        BindingFlags.NonPublic | BindingFlags.Instance);
    
    ilMH.Emit(OpCodes.Ldfld, testInfo);
    ilMH.Emit(OpCodes.Ldarg_1);
    ilMH.Emit(OpCodes.Mul);
    ilMH.Emit(OpCodes.Ret);
    
    ILGenerator^ ilMH = multiplyHidden->GetILGenerator();
    ilMH->Emit(OpCodes::Ldarg_0);
    
    FieldInfo^ testInfo = Example::typeid->GetField("test",
        BindingFlags::NonPublic | BindingFlags::Instance);
    
    ilMH->Emit(OpCodes::Ldfld, testInfo);
    ilMH->Emit(OpCodes::Ldarg_1);
    ilMH->Emit(OpCodes::Mul);
    ilMH->Emit(OpCodes::Ret);
    
  5. Créez une instance du délégué (déclaré dans l'étape 1) qui représente la méthode dynamique en appelant la surcharge de la méthode CreateDelegate(Type, Object). La création du délégué achève la méthode et toute tentative supplémentaire de modification de la méthode, par exemple l'ajout de code MSIL, est ignorée.

    Remarque :

    Vous pouvez appeler plusieurs fois la méthode CreateDelegate pour créer des délégués liés à d'autres instances du type cible.

    Le code suivant lie la méthode à une nouvelle instance de la classe Example dont le champ de test privé a la valeur 42. En d'autres termes, chaque fois que le délégué est appelé, l'instance de Example est passée au premier paramètre de la méthode.

    Le délégué OneParameter est utilisé dans la mesure où le premier paramètre de la méthode reçoit toujours l'instance de Example. Lors de l'appel du délégué, seul le deuxième paramètre est nécessaire.

    Dim invoke As OneParameter(Of Integer, Integer) = _
        CType( _
            multiplyPrivate.CreateDelegate( _
                GetType(OneParameter(Of Integer, Integer)), _
                new Example(42) _
            ), _
            OneParameter(Of Integer, Integer) _
        )
    
    Console.WriteLine("3 * test = {0}", invoke(3))
    
    OneParameter<int, int> invoke = (OneParameter<int, int>)
        multiplyHidden.CreateDelegate(
            typeof(OneParameter<int, int>), 
            new Example(42)
        );
    
    Console.WriteLine("3 * test = {0}", invoke(3));
    
    OneParameter<int, int>^ invoke = (OneParameter<int, int>^)
        multiplyHidden->CreateDelegate(
            OneParameter<int, int>::typeid, 
            gcnew Example(42)
        );
    
    Console::WriteLine("3 * test = {0}", invoke(3));
    

Exemple

L'exemple de code suivant montre une méthode dynamique simple et une méthode dynamique liée à une instance d'une classe.

La méthode dynamique simple prend un argument, un entier 32 bits, et retourne le carré 64 bits de cet entier. Un délégué générique est utilisé pour appeler la méthode.

La deuxième méthode dynamique possède deux paramètres, de type Example et de type int (Integer en Visual Basic). Une fois la méthode dynamique créée, elle est liée à une instance de Example, à l'aide d'un délégué générique qui possède un argument de type int. Le délégué n'a pas d'argument de type Example, car le premier paramètre de la méthode reçoit toujours l'instance liée de Example. Lors de l'appel du délégué, seul l'argument int est fourni. Cette méthode dynamique accède à un champ privé de la classe Example et retourne le produit du champ privé et de l'argument int.

L'exemple de code définit des délégués qui peuvent être utilisés pour exécuter les méthodes.

Imports System
Imports System.Reflection
Imports System.Reflection.Emit

Public Class Example

    ' The following constructor and private field are used to
    ' demonstrate a method bound to an object.
    '
    Private test As Integer
    Public Sub New(ByVal test As Integer) 
        Me.test = test 
    End Sub

    ' Declare delegates that can be used to execute the completed 
    ' SquareIt dynamic method. The OneParameter delegate can be 
    ' used to execute any method with one parameter and a return
    ' value, or a method with two parameters and a return value
    ' if the delegate is bound to an object.
    '
    Private Delegate Function _
        SquareItInvoker(ByVal input As Integer) As Long 

    Private Delegate Function _
        OneParameter(Of TReturn, TParameter0) _
        (ByVal p0 As TParameter0) As TReturn 

    Public Shared Sub Main() 

        ' Example 1: A simple dynamic method.
        '
        ' Create an array that specifies the parameter types for the
        ' dynamic method. In this example the only parameter is an 
        ' Integer, so the array has only one element.
        '
        Dim methodArgs As Type() = { GetType(Integer) }

        ' Create a DynamicMethod. In this example the method is
        ' named SquareIt. It is not necessary to give dynamic 
        ' methods names. They cannot be invoked by name, and two
        ' dynamic methods can have the same name. However, the 
        ' name appears in calls stacks and can be useful for
        ' debugging. 
        '
        ' In this example the return type of the dynamic method
        ' is Long. The method is associated with the module that 
        ' contains the Example class. Any loaded module could be
        ' specified. The dynamic method is like a module-level
        ' Shared method.
        '
        Dim squareIt As New DynamicMethod( _
            "SquareIt", _
            GetType(Long), _
            methodArgs, _
            GetType(Example).Module)

        ' Emit the method body. In this example ILGenerator is used
        ' to emit the MSIL. DynamicMethod has an associated type
        ' DynamicILInfo that can be used in conjunction with 
        ' unmanaged code generators.
        '
        ' The MSIL loads the argument, which is an Integer, onto the 
        ' stack, converts the Integer to a Long, duplicates the top
        ' item on the stack, and multiplies the top two items on the
        ' stack. This leaves the squared number on the stack, and 
        ' all the method has to do is return.
        '
        Dim il As ILGenerator = squareIt.GetILGenerator()
        il.Emit(OpCodes.Ldarg_0)
        il.Emit(OpCodes.Conv_I8)
        il.Emit(OpCodes.Dup)
        il.Emit(OpCodes.Mul)
        il.Emit(OpCodes.Ret)

        ' Create a delegate that represents the dynamic method. 
        ' Creating the delegate completes the method, and any further 
        ' attempts to change the method (for example, by adding more
        ' MSIL) are ignored. The following code uses a generic 
        ' delegate that can produce delegate types matching any
        ' single-parameter method that has a return type.
        '
        Dim invokeSquareIt As OneParameter(Of Long, Integer) = _
            CType( _
                squareIt.CreateDelegate( _
                    GetType(OneParameter(Of Long, Integer))), _
                OneParameter(Of Long, Integer) _
            )

        Console.WriteLine("123456789 squared = {0}", _ 
            invokeSquareIt(123456789))


        ' Example 2: A dynamic method bound to an instance.
        '
        ' Create an array that specifies the parameter types for a
        ' dynamic method. If the delegate representing the method
        ' is to be bound to an object, the first parameter must 
        ' match the type the delegate is bound to. In the following
        ' code the bound instance is of the Example class. 
        '
        Dim methodArgs2 As Type() = _
            { GetType(Example), GetType(Integer) }

        ' Create a DynamicMethod. In this example the method has no
        ' name. The return type of the method is Integer. The method 
        ' has access to the protected and private members of the 
        ' Example class. 
        '
        Dim multiplyPrivate As New DynamicMethod( _
            "", _
            GetType(Integer), _
            methodArgs2, _
            GetType(Example))

        ' Emit the method body. In this example ILGenerator is used
        ' to emit the MSIL. DynamicMethod has an associated type
        ' DynamicILInfo that can be used in conjunction with 
        ' unmanaged code generators.
        '
        ' The MSIL loads the first argument, which is an instance of
        ' the Example class, and uses it to load the value of a 
        ' private instance field of type Integer. The second argument 
        ' is loaded, and the two numbers are multiplied. If the result
        ' is larger than Integer, the value is truncated and the most 
        ' significant bits are discarded. The method returns, with
        ' the return value on the stack.
        '
        Dim ilMP As ILGenerator = multiplyPrivate.GetILGenerator()
        ilMP.Emit(OpCodes.Ldarg_0)

        Dim testInfo As FieldInfo = _
            GetType(Example).GetField("test", _
                BindingFlags.NonPublic Or BindingFlags.Instance)

        ilMP.Emit(OpCodes.Ldfld, testInfo)
        ilMP.Emit(OpCodes.Ldarg_1)
        ilMP.Emit(OpCodes.Mul)
        ilMP.Emit(OpCodes.Ret)

        ' Create a delegate that represents the dynamic method. 
        ' Creating the delegate completes the method, and any further 
        ' attempts to change the method  for example, by adding more
        ' MSIL  are ignored. 
        ' 
        ' The following code binds the method to a new instance
        ' of the Example class whose private test field is set to 42.
        ' That is, each time the delegate is invoked the instance of
        ' Example is passed to the first parameter of the method.
        '
        ' The delegate OneParameter is used, because the first
        ' parameter of the method receives the instance of Example.
        ' When the delegate is invoked, only the second parameter is
        ' required. 
        '
        Dim invoke As OneParameter(Of Integer, Integer) = _
            CType( _
                multiplyPrivate.CreateDelegate( _
                    GetType(OneParameter(Of Integer, Integer)), _
                    new Example(42) _
                ), _
                OneParameter(Of Integer, Integer) _
            )

        Console.WriteLine("3 * test = {0}", invoke(3))

    End Sub 

End Class

' This code example produces the following output:
'
'123456789 squared = 15241578750190521
'3 * test = 126
' 
using System;
using System.Reflection;
using System.Reflection.Emit;

public class Example
{
    // The following constructor and private field are used to
    // demonstrate a method bound to an object.
    private int test;
    public Example(int test) { this.test = test; }

    // Declare delegates that can be used to execute the completed 
    // SquareIt dynamic method. The OneParameter delegate can be 
    // used to execute any method with one parameter and a return
    // value, or a method with two parameters and a return value
    // if the delegate is bound to an object.
    //
    private delegate long SquareItInvoker(int input);

    private delegate TReturn OneParameter<TReturn, TParameter0>
        (TParameter0 p0);

    public static void Main()
    {
        // Example 1: A simple dynamic method.
        //
        // Create an array that specifies the parameter types for the
        // dynamic method. In this example the only parameter is an 
        // int, so the array has only one element.
        //
        Type[] methodArgs = {typeof(int)};

        // Create a DynamicMethod. In this example the method is
        // named SquareIt. It is not necessary to give dynamic 
        // methods names. They cannot be invoked by name, and two
        // dynamic methods can have the same name. However, the 
        // name appears in calls stacks and can be useful for
        // debugging. 
        //
        // In this example the return type of the dynamic method
        // is long. The method is associated with the module that 
        // contains the Example class. Any loaded module could be
        // specified. The dynamic method is like a module-level
        // static method.
        //
        DynamicMethod squareIt = new DynamicMethod(
            "SquareIt", 
            typeof(long), 
            methodArgs, 
            typeof(Example).Module);

        // Emit the method body. In this example ILGenerator is used
        // to emit the MSIL. DynamicMethod has an associated type
        // DynamicILInfo that can be used in conjunction with 
        // unmanaged code generators.
        //
        // The MSIL loads the argument, which is an int, onto the 
        // stack, converts the int to a long, duplicates the top
        // item on the stack, and multiplies the top two items on the
        // stack. This leaves the squared number on the stack, and 
        // all the method has to do is return.
        //
        ILGenerator il = squareIt.GetILGenerator();
        il.Emit(OpCodes.Ldarg_0);
        il.Emit(OpCodes.Conv_I8);
        il.Emit(OpCodes.Dup);
        il.Emit(OpCodes.Mul);
        il.Emit(OpCodes.Ret);

        // Create a delegate that represents the dynamic method. 
        // Creating the delegate completes the method, and any further 
        // attempts to change the method (for example, by adding more
        // MSIL) are ignored. The following code uses a generic 
        // delegate that can produce delegate types matching any
        // single-parameter method that has a return type.
        //
        OneParameter<long, int> invokeSquareIt = 
            (OneParameter<long, int>)
            squareIt.CreateDelegate(typeof(OneParameter<long, int>));

        Console.WriteLine("123456789 squared = {0}",
            invokeSquareIt(123456789));

        // Example 2: A dynamic method bound to an instance.
        //
        // Create an array that specifies the parameter types for a
        // dynamic method. If the delegate representing the method
        // is to be bound to an object, the first parameter must 
        // match the type the delegate is bound to. In the following
        // code the bound instance is of the Example class. 
        //
        Type[] methodArgs2 = { typeof(Example), typeof(int) };

        // Create a DynamicMethod. In this example the method has no
        // name. The return type of the method is int. The method 
        // has access to the protected and private data of the 
        // Example class.
        //
        DynamicMethod multiplyHidden = new DynamicMethod(
            "", 
            typeof(int), 
            methodArgs2, 
            typeof(Example));

        // Emit the method body. In this example ILGenerator is used
        // to emit the MSIL. DynamicMethod has an associated type
        // DynamicILInfo that can be used in conjunction with 
        // unmanaged code generators.
        //
        // The MSIL loads the first argument, which is an instance of
        // the Example class, and uses it to load the value of a 
        // private instance field of type int. The second argument is
        // loaded, and the two numbers are multiplied. If the result
        // is larger than int, the value is truncated and the most 
        // significant bits are discarded. The method returns, with
        // the return value on the stack.
        //
        ILGenerator ilMH = multiplyHidden.GetILGenerator();
        ilMH.Emit(OpCodes.Ldarg_0);

        FieldInfo testInfo = typeof(Example).GetField("test",
            BindingFlags.NonPublic | BindingFlags.Instance);

        ilMH.Emit(OpCodes.Ldfld, testInfo);
        ilMH.Emit(OpCodes.Ldarg_1);
        ilMH.Emit(OpCodes.Mul);
        ilMH.Emit(OpCodes.Ret);

        // Create a delegate that represents the dynamic method. 
        // Creating the delegate completes the method, and any further 
        // attempts to change the method  for example, by adding more
        // MSIL  are ignored. 
        // 
        // The following code binds the method to a new instance
        // of the Example class whose private test field is set to 42.
        // That is, each time the delegate is invoked the instance of
        // Example is passed to the first parameter of the method.
        //
        // The delegate OneParameter is used, because the first
        // parameter of the method receives the instance of Example.
        // When the delegate is invoked, only the second parameter is
        // required. 
        //
        OneParameter<int, int> invoke = (OneParameter<int, int>)
            multiplyHidden.CreateDelegate(
                typeof(OneParameter<int, int>), 
                new Example(42)
            );

        Console.WriteLine("3 * test = {0}", invoke(3));
    }
}
/* This code example produces the following output:

123456789 squared = 15241578750190521
3 * test = 126
 */
using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;

public ref class Example
{
    // The following constructor and private field are used to
    // demonstrate a method bound to an object.
private:
    int test;

public:
    Example(int test) { this->test = test; }

    // Declare delegates that can be used to execute the completed 
    // SquareIt dynamic method. The OneParameter delegate can be 
    // used to execute any method with one parameter and a return
    // value, or a method with two parameters and a return value
    // if the delegate is bound to an object.
    //
private: 
    delegate long long SquareItInvoker(int input);

    generic<typename TReturn, typename TParameter0> 
        delegate TReturn OneParameter(TParameter0 p0);

public:
    static void Main()
    {
        // Example 1: A simple dynamic method.
        //
        // Create an array that specifies the parameter types for the
        // dynamic method. In this example the only parameter is an 
        // int, so the array has only one element.
        //
        array<Type^>^ methodArgs = { int::typeid };

        // Create a DynamicMethod. In this example the method is
        // named SquareIt. It is not necessary to give dynamic 
        // methods names. They cannot be invoked by name, and two
        // dynamic methods can have the same name. However, the 
        // name appears in calls stacks and can be useful for
        // debugging. 
        //
        // In this example the return type of the dynamic method is
        // long long. The method is associated with the module that 
        // contains the Example class. Any loaded module could be
        // specified. The dynamic method is like a module-level
        // static method.
        //
        DynamicMethod^ squareIt = gcnew DynamicMethod(
            "SquareIt", 
            long long::typeid, 
            methodArgs, 
            Example::typeid->Module);

        // Emit the method body. In this example ILGenerator is used
        // to emit the MSIL. DynamicMethod has an associated type
        // DynamicILInfo that can be used in conjunction with 
        // unmanaged code generators.
        //
        // The MSIL loads the argument, which is an int, onto the 
        // stack, converts the int to a long long, duplicates the top
        // item on the stack, and multiplies the top two items on the
        // stack. This leaves the squared number on the stack, and 
        // all the method has to do is return.
        //
        ILGenerator^ il = squareIt->GetILGenerator();
        il->Emit(OpCodes::Ldarg_0);
        il->Emit(OpCodes::Conv_I8);
        il->Emit(OpCodes::Dup);
        il->Emit(OpCodes::Mul);
        il->Emit(OpCodes::Ret);

        // Create a delegate that represents the dynamic method. 
        // Creating the delegate completes the method, and any further 
        // attempts to change the method (for example, by adding more
        // MSIL) are ignored. The following code uses a generic 
        // delegate that can produce delegate types matching any
        // single-parameter method that has a return type.
        //
        OneParameter<long long, int>^ invokeSquareIt = 
            (OneParameter<long long, int>^)
            squareIt->CreateDelegate(OneParameter<long long, int>::typeid);

        Console::WriteLine("123456789 squared = {0}",
            invokeSquareIt(123456789));

        // Example 2: A dynamic method bound to an instance.
        //
        // Create an array that specifies the parameter types for a
        // dynamic method. If the delegate representing the method
        // is to be bound to an object, the first parameter must 
        // match the type the delegate is bound to. In the following
        // code the bound instance is of the Example class. 
        //
        array<Type^>^ methodArgs2 = { Example::typeid, int::typeid };

        // Create a DynamicMethod. In this example the method has no
        // name. The return type of the method is int. The method 
        // has access to the protected and private data of the 
        // Example class.
        //
        DynamicMethod^ multiplyHidden = gcnew DynamicMethod(
            "", 
            int::typeid, 
            methodArgs2, 
            Example::typeid);

        // Emit the method body. In this example ILGenerator is used
        // to emit the MSIL. DynamicMethod has an associated type
        // DynamicILInfo that can be used in conjunction with 
        // unmanaged code generators.
        //
        // The MSIL loads the first argument, which is an instance of
        // the Example class, and uses it to load the value of a 
        // private instance field of type int. The second argument is
        // loaded, and the two numbers are multiplied. If the result
        // is larger than int, the value is truncated and the most 
        // significant bits are discarded. The method returns, with
        // the return value on the stack.
        //
        ILGenerator^ ilMH = multiplyHidden->GetILGenerator();
        ilMH->Emit(OpCodes::Ldarg_0);

        FieldInfo^ testInfo = Example::typeid->GetField("test",
            BindingFlags::NonPublic | BindingFlags::Instance);

        ilMH->Emit(OpCodes::Ldfld, testInfo);
        ilMH->Emit(OpCodes::Ldarg_1);
        ilMH->Emit(OpCodes::Mul);
        ilMH->Emit(OpCodes::Ret);

        // Create a delegate that represents the dynamic method. 
        // Creating the delegate completes the method, and any further 
        // attempts to change the method  for example, by adding more
        // MSIL  are ignored. 
        // 
        // The following code binds the method to a new instance
        // of the Example class whose private test field is set to 42.
        // That is, each time the delegate is invoked the instance of
        // Example is passed to the first parameter of the method.
        //
        // The delegate OneParameter is used, because the first
        // parameter of the method receives the instance of Example.
        // When the delegate is invoked, only the second parameter is
        // required. 
        //
        OneParameter<int, int>^ invoke = (OneParameter<int, int>^)
            multiplyHidden->CreateDelegate(
                OneParameter<int, int>::typeid, 
                gcnew Example(42)
            );

        Console::WriteLine("3 * test = {0}", invoke(3));
    }
};

void main()
{
    Example::Main();
}
/* This code example produces the following output:

123456789 squared = 15241578750190521
3 * test = 126
 */

Compilation du code

  • Le code contient les instructions using C# (Imports en Visual Basic) nécessaires à la compilation.

  • Aucune référence d'assembly supplémentaire n'est requise.

  • Compilez le code à la ligne de commande à l'aide de csc.exe, vbc.exe ou cl.exe. Pour compiler le code dans Visual Studio, placez-le dans un modèle de projet d'application console.

Voir aussi

Concepts

Scénarios de méthodes dynamiques avec émission de réflexion

Référence

DynamicMethod

Autres ressources

Utilisation de l'émission de réflexion