Procedura: Definire un tipo generico tramite reflection emit

Questo articolo illustra come creare un tipo generico semplice con due parametri di tipo, come applicare vincoli di classe, vincoli di interfaccia e vincoli speciali ai parametri di tipo e come creare membri che usano i parametri di tipo della classe come tipi di parametro e tipi restituiti.

Importante

Un metodo non può essere considerato generico solo perché appartiene a un tipo generico e ne usa i parametri di tipo. Per essere generico, un metodo deve avere un elenco specifico di parametri di tipo. La maggior parte dei metodi appartenenti a tipi generici non sono generici, come nell'esempio seguente. Per un esempio di creazione di un metodo generico, vedere Procedura: Definire un metodo generico tramite reflection emit.

Definire un tipo generico

  1. Definire un assembly dinamico denominato GenericEmitExample1. In questo esempio poiché l'assembly viene eseguito e salvato su disco, viene specificato AssemblyBuilderAccess.RunAndSave.

    AppDomain^ myDomain = AppDomain::CurrentDomain;
    AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" );
    AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly( 
        myAsmName, AssemblyBuilderAccess::RunAndSave );
    
    AppDomain myDomain = AppDomain.CurrentDomain;
    AssemblyName myAsmName = new AssemblyName("GenericEmitExample1");
    AssemblyBuilder myAssembly =
        myDomain.DefineDynamicAssembly(myAsmName,
            AssemblyBuilderAccess.RunAndSave);
    
    Dim myDomain As AppDomain = AppDomain.CurrentDomain
    Dim myAsmName As New AssemblyName("GenericEmitExample1")
    Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
        myAsmName, _
        AssemblyBuilderAccess.RunAndSave)
    
  2. Definire un modulo dinamico. Un assembly è composto da moduli eseguibili. Per un assembly a modulo singolo, il nome del modulo è lo stesso dell'assembly e il nome del file corrisponde a quello del modulo seguito da un'estensione.

    ModuleBuilder^ myModule = myAssembly->DefineDynamicModule( 
        myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
    
    ModuleBuilder myModule =
        myAssembly.DefineDynamicModule(myAsmName.Name,
           myAsmName.Name + ".dll");
    
    Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _
        myAsmName.Name, _
        myAsmName.Name & ".dll")
    
  3. Definire una classe . In questo esempio la classe è denominata Sample.

    TypeBuilder^ myType = myModule->DefineType( L"Sample", 
        TypeAttributes::Public );
    
    TypeBuilder myType =
        myModule.DefineType("Sample", TypeAttributes.Public);
    
    Dim myType As TypeBuilder = myModule.DefineType( _
        "Sample", _
        TypeAttributes.Public)
    
  4. Definire i parametri di tipo generico di Sample passando una matrice di stringhe contenenti i nomi dei parametri al metodo TypeBuilder.DefineGenericParameters. In questo modo la classe diventa un tipo generico. Il valore restituito è una matrice di oggetti GenericTypeParameterBuilder che rappresentano i parametri di tipo e che possono essere usati nel codice creato.

    Nel codice seguente Sample diventa un tipo generico con parametri di tipo TFirst e TSecond. Per migliorare la leggibilità del codice, ogni oggetto GenericTypeParameterBuilder viene inserito in una variabile che ha lo stesso nome del parametro di tipo.

    array<String^>^typeParamNames = {L"TFirst",L"TSecond"};
    array<GenericTypeParameterBuilder^>^typeParams = 
        myType->DefineGenericParameters( typeParamNames );
    
    GenericTypeParameterBuilder^ TFirst = typeParams[0];
    GenericTypeParameterBuilder^ TSecond = typeParams[1];
    
    string[] typeParamNames = {"TFirst", "TSecond"};
    GenericTypeParameterBuilder[] typeParams =
        myType.DefineGenericParameters(typeParamNames);
    
    GenericTypeParameterBuilder TFirst = typeParams[0];
    GenericTypeParameterBuilder TSecond = typeParams[1];
    
    Dim typeParamNames() As String = {"TFirst", "TSecond"}
    Dim typeParams() As GenericTypeParameterBuilder = _
        myType.DefineGenericParameters(typeParamNames)
    
    Dim TFirst As GenericTypeParameterBuilder = typeParams(0)
    Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
    
  5. Aggiungere vincoli speciali ai parametri di tipo. In questo esempio il parametro di tipo TFirst è vincolato a tipi con costruttori senza parametri e a tipi di riferimento.

    TFirst->SetGenericParameterAttributes( 
        GenericParameterAttributes::DefaultConstructorConstraint | 
        GenericParameterAttributes::ReferenceTypeConstraint 
    );
    
    TFirst.SetGenericParameterAttributes(
        GenericParameterAttributes.DefaultConstructorConstraint |
        GenericParameterAttributes.ReferenceTypeConstraint);
    
    TFirst.SetGenericParameterAttributes( _
        GenericParameterAttributes.DefaultConstructorConstraint _
        Or GenericParameterAttributes.ReferenceTypeConstraint)
    
  6. Facoltativamente, aggiungere vincoli di interfaccia e di classe ai parametri di tipo. In questo esempio il parametro di tipo TFirst è vincolato a tipi che derivano dalla classe di base rappresentata dall'oggetto Type contenuto nella variabile baseType e che implementano le interfacce i cui tipi sono contenuti nelle variabili interfaceA e interfaceB. Per la dichiarazione e l'assegnazione di queste variabili, vedere l'esempio di codice.

    array<Type^>^interfaceTypes = { interfaceA, interfaceB };
    TSecond->SetInterfaceConstraints( interfaceTypes );
    TSecond->SetBaseTypeConstraint( baseType );
    
    TSecond.SetBaseTypeConstraint(baseType);
    Type[] interfaceTypes = {interfaceA, interfaceB};
    TSecond.SetInterfaceConstraints(interfaceTypes);
    
    TSecond.SetBaseTypeConstraint(baseType)
    Dim interfaceTypes() As Type = {interfaceA, interfaceB}
    TSecond.SetInterfaceConstraints(interfaceTypes)
    
  7. Definire un campo. In questo esempio il tipo del campo è specificato dal parametro di tipo TFirst. Poiché GenericTypeParameterBuilder deriva da Type, è possibile usare parametri di tipo generico ovunque sia consentito l'uso di un tipo.

    FieldBuilder^ exField = 
        myType->DefineField("ExampleField", TFirst, 
            FieldAttributes::Private);
    
    FieldBuilder exField =
        myType.DefineField("ExampleField", TFirst,
            FieldAttributes.Private);
    
    Dim exField As FieldBuilder = _
        myType.DefineField("ExampleField", TFirst, _
            FieldAttributes.Private)
    
  8. Definire un metodo che usa i parametri di tipo del tipo generico. Si noti che questi tipi di metodi non sono generici, a meno che non abbiano specifici elenchi di parametri di tipo. Il codice seguente definisce un metodo static (Shared in Visual Basic) che accetta una matrice di TFirst e restituisce List<TFirst> (List(Of TFirst) in Visual Basic) contenente tutti gli elementi della matrice. Per definire questo metodo, è necessario creare il tipo List<TFirst> chiamando MakeGenericType nella definizione di tipo generico List<T>. Quando si usa l'operatore typeof (GetType in Visual Basic), T viene omesso in modo da ottenere la definizione di tipo generico. Il tipo di parametro viene creato usando il metodo MakeArrayType.

    Type^ listOf = List::typeid;
    Type^ listOfTFirst = listOf->MakeGenericType(TFirst);
    array<Type^>^ mParamTypes = { TFirst->MakeArrayType() };
    
    MethodBuilder^ exMethod = 
        myType->DefineMethod("ExampleMethod", 
            MethodAttributes::Public | MethodAttributes::Static, 
            listOfTFirst, 
            mParamTypes);
    
    Type listOf = typeof(List<>);
    Type listOfTFirst = listOf.MakeGenericType(TFirst);
    Type[] mParamTypes = {TFirst.MakeArrayType()};
    
    MethodBuilder exMethod =
        myType.DefineMethod("ExampleMethod",
            MethodAttributes.Public | MethodAttributes.Static,
            listOfTFirst,
            mParamTypes);
    
    Dim listOf As Type = GetType(List(Of ))
    Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst)
    Dim mParamTypes() As Type = {TFirst.MakeArrayType()}
    
    Dim exMethod As MethodBuilder = _
        myType.DefineMethod("ExampleMethod", _
            MethodAttributes.Public Or MethodAttributes.Static, _
            listOfTFirst, _
            mParamTypes)
    
  9. Creare il corpo del metodo. Il corpo del metodo è costituito da tre codici operativi che caricano la matrice di input nello stack, chiamano il costruttore List<TFirst> che accetta IEnumerable<TFirst>, che esegue tutte le operazioni necessarie per l'inserimento degli elementi di input nell'elenco, e terminano lasciando il nuovo oggetto List<T> nello stack. Nella creazione di questo codice la difficoltà principale è rappresentata dal recupero del costruttore.

    Poiché il metodo GetConstructor non è supportato in GenericTypeParameterBuilder, non è possibile ottenere il costruttore di List<TFirst> in modo diretto. È innanzitutto necessario ottenere il costruttore della definizione di tipo generico List<T>, quindi chiamare un metodo che lo converta nel costruttore corrispondente di List<TFirst>.

    Il costruttore usato per questo esempio di codice accetta IEnumerable<T>. Si noti tuttavia che, non trattandosi della definizione di tipo generico dell'interfaccia generica IEnumerable<T>, è necessario sostituire il parametro di tipo T di List<T> per il parametro di tipo T di IEnumerable<T>. Questo sembra confondere solo perché entrambi i tipi hanno parametri di tipo denominati T. Ecco perché questo esempio di codice usa i nomi TFirst e TSecond.) Per ottenere il tipo dell'argomento del costruttore, iniziare con la definizione IEnumerable<T> del tipo generico e chiamare MakeGenericType con il primo parametro di tipo generico di List<T>. L'elenco di argomenti del costruttore deve essere passato come matrice che, in questo caso, contiene un unico argomento.

    Nota

    La definizione di tipo generico è espressa come IEnumerable<> quando viene usato l'operatore typeof in C# oppure come IEnumerable(Of ) quando viene usato l'operatore GetType in Visual Basic.

    A questo punto è possibile ottenere il costruttore di List<T> chiamando GetConstructor nella definizione di tipo generico. Per convertire questo costruttore nel costruttore corrispondente di List<TFirst>, passare List<TFirst> e il costruttore da List<T> al metodo statico TypeBuilder.GetConstructor(Type, ConstructorInfo).

    ILGenerator^ ilgen = exMethod->GetILGenerator();
         
    Type^ ienumOf = IEnumerable::typeid;
    Type^ TfromListOf = listOf->GetGenericArguments()[0];
    Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf);
    array<Type^>^ ctorArgs = {ienumOfT};
    
    ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs);
    ConstructorInfo^ ctor = 
        TypeBuilder::GetConstructor(listOfTFirst, ctorPrep);
    
    ilgen->Emit(OpCodes::Ldarg_0);
    ilgen->Emit(OpCodes::Newobj, ctor);
    ilgen->Emit(OpCodes::Ret);
    
    ILGenerator ilgen = exMethod.GetILGenerator();
    
    Type ienumOf = typeof(IEnumerable<>);
    Type TfromListOf = listOf.GetGenericArguments()[0];
    Type ienumOfT = ienumOf.MakeGenericType(TfromListOf);
    Type[] ctorArgs = {ienumOfT};
    
    ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs);
    ConstructorInfo ctor =
        TypeBuilder.GetConstructor(listOfTFirst, ctorPrep);
    
    ilgen.Emit(OpCodes.Ldarg_0);
    ilgen.Emit(OpCodes.Newobj, ctor);
    ilgen.Emit(OpCodes.Ret);
    
    Dim ilgen As ILGenerator = exMethod.GetILGenerator()
    
    Dim ienumOf As Type = GetType(IEnumerable(Of ))
    Dim listOfTParams() As Type = listOf.GetGenericArguments()
    Dim TfromListOf As Type = listOfTParams(0)
    Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf)
    Dim ctorArgs() As Type = {ienumOfT}
    
    Dim ctorPrep As ConstructorInfo = _
        listOf.GetConstructor(ctorArgs)
    Dim ctor As ConstructorInfo = _
        TypeBuilder.GetConstructor(listOfTFirst, ctorPrep)
    
    ilgen.Emit(OpCodes.Ldarg_0)
    ilgen.Emit(OpCodes.Newobj, ctor)
    ilgen.Emit(OpCodes.Ret)
    
  10. Creare il tipo e salvare il file.

    Type^ finished = myType->CreateType();
    myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
    
    Type finished = myType.CreateType();
    myAssembly.Save(myAsmName.Name+".dll");
    
    Dim finished As Type = myType.CreateType()
    myAssembly.Save(myAsmName.Name & ".dll")
    
  11. Richiamare il metodo. ExampleMethod non è generico, ma il tipo a cui appartiene è generico, quindi per ottenere un MethodInfo oggetto che può essere richiamato, è necessario creare un tipo costruito dalla definizione del tipo per Sample. Il tipo costruito usa la classe Example che, essendo un tipo di riferimento e disponendo di un costruttore senza parametri predefinito, soddisfa i vincoli di TFirst e la classe ExampleDerived che soddisfa i vincoli di TSecond. Il codice per ExampleDerived è disponibile nella sezione del codice di esempio. Questi due tipi vengono passati a MakeGenericType per creare il tipo costruito. MethodInfo viene quindi ottenuto usando il metodo GetMethod.

    array<Type^>^ typeArgs = 
        { Example::typeid, ExampleDerived::typeid };
    Type^ constructed = finished->MakeGenericType(typeArgs);
    MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
    
    Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)};
    Type constructed = finished.MakeGenericType(typeArgs);
    MethodInfo mi = constructed.GetMethod("ExampleMethod");
    
    Dim typeArgs() As Type = _
        {GetType(Example), GetType(ExampleDerived)}
    Dim constructed As Type = finished.MakeGenericType(typeArgs)
    Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
    
  12. Il codice seguente crea una matrice di oggetti Example, inserisce la matrice in una matrice di tipo Object che rappresenta gli argomenti del metodo da richiamare e le passa al metodo Invoke(Object, Object[]). Il primo argomento del metodo Invoke è un riferimento Null perché il metodo è static.

    array<Example^>^ input = { gcnew Example(), gcnew Example() };
    array<Object^>^ arguments = { input };
    
    List<Example^>^ listX = 
        (List<Example^>^) mi->Invoke(nullptr, arguments);
    
    Console::WriteLine(
        "\nThere are {0} elements in the List<Example>.", 
        listX->Count);
    
    Example[] input = {new Example(), new Example()};
    object[] arguments = {input};
    
    List<Example> listX =
        (List<Example>) mi.Invoke(null, arguments);
    
    Console.WriteLine(
        "\nThere are {0} elements in the List<Example>.",
        listX.Count);
    
    Dim input() As Example = {New Example(), New Example()}
    Dim arguments() As Object = {input}
    
    Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments)
    
    Console.WriteLine(vbLf & _
        "There are {0} elements in the List(Of Example).", _
        listX.Count _
    )
    

Esempio

L'esempio di codice seguente definisce una classe denominata Sample insieme a una classe di base e a due interfacce. Il programma definisce due parametri di tipo generico per la classe Sample, trasformandola in un tipo generico. I parametri di tipo sono gli unici elementi in grado di rendere generico un tipo. Il programma segnala questa trasformazione visualizzando un messaggio di prova sia prima che dopo la definizione dei parametri di tipo.

Il parametro di tipo TSecond viene usato per dimostrare i vincoli di interfaccia e di classe tramite le interfacce e la classe di base, mentre il parametro di tipo TFirst viene usato per dimostrare i vincoli speciali.

L'esempio di codice definisce un campo e un metodo usando i parametri di tipo della classe per il tipo di campo e per il parametro e il tipo restituito del metodo.

Dopo aver creato la classe Sample, viene richiamato il metodo.

Il programma include un metodo che visualizza informazioni su un tipo generico e un metodo che visualizza i vincoli speciali in un parametro di tipo. Questi metodi vengono usati per visualizzare informazioni sulla classe Sample completata.

Il programma salva il modulo completato su disco come GenericEmitExample1.dll, in modo da poterlo aprire con il Ildasm.exe (Disassembler IL) ed esaminare il CIL per la Sample classe .

using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
using namespace System::Collections::Generic;

// Dummy class to satisfy TFirst constraints.
//
public ref class Example {};

// Define a trivial base class and two trivial interfaces 
// to use when demonstrating constraints.
//
public ref class ExampleBase {};
public interface class IExampleA {};
public interface class IExampleB {};

// Define a trivial type that can substitute for type parameter 
// TSecond.
//
public ref class ExampleDerived : ExampleBase, IExampleA, IExampleB {};

// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
static void ListConstraintAttributes( Type^ t )
{
   // Mask off the constraint flags. 
   GenericParameterAttributes constraints = 
       t->GenericParameterAttributes & 
       GenericParameterAttributes::SpecialConstraintMask;

   if ((constraints & GenericParameterAttributes::ReferenceTypeConstraint)
           != GenericParameterAttributes::None)
       Console::WriteLine( L"    ReferenceTypeConstraint");

   if ((constraints & GenericParameterAttributes::NotNullableValueTypeConstraint)
           != GenericParameterAttributes::None)
       Console::WriteLine( L"    NotNullableValueTypeConstraint");

   if ((constraints & GenericParameterAttributes::DefaultConstructorConstraint)
           != GenericParameterAttributes::None)
       Console::WriteLine( L"    DefaultConstructorConstraint");
}

static void DisplayGenericParameters( Type^ t )
{
   if (!t->IsGenericType)
   {
       Console::WriteLine( L"Type '{0}' is not generic." );
       return;
   }
   if (!t->IsGenericTypeDefinition)
       t = t->GetGenericTypeDefinition();

   array<Type^>^ typeParameters = t->GetGenericArguments();
   Console::WriteLine( L"\r\nListing {0} type parameters for type '{1}'.", 
       typeParameters->Length, t );

   for each ( Type^ tParam in typeParameters )
   {
       Console::WriteLine( L"\r\nType parameter {0}:", 
           tParam->ToString() );

       for each (Type^ c in tParam->GetGenericParameterConstraints())
       {
           if (c->IsInterface)
               Console::WriteLine( L"    Interface constraint: {0}", c);
           else
               Console::WriteLine( L"    Base type constraint: {0}", c);
       }
       ListConstraintAttributes(tParam);
   }
}

void main()
{
   // Define a dynamic assembly to contain the sample type. The
   // assembly will be run and also saved to disk, so
   // AssemblyBuilderAccess.RunAndSave is specified.
   //
   AppDomain^ myDomain = AppDomain::CurrentDomain;
   AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" );
   AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly( 
       myAsmName, AssemblyBuilderAccess::RunAndSave );

   // An assembly is made up of executable modules. For a single-
   // module assembly, the module name and file name are the same 
   // as the assembly name. 
   //
   ModuleBuilder^ myModule = myAssembly->DefineDynamicModule( 
       myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );

   // Get type objects for the base class trivial interfaces to
   // be used as constraints.
   //
   Type^ baseType = ExampleBase::typeid; 
   Type^ interfaceA = IExampleA::typeid; 
   Type^ interfaceB = IExampleB::typeid;
   
   // Define the sample type.
   //
   TypeBuilder^ myType = myModule->DefineType( L"Sample", 
       TypeAttributes::Public );
   
   Console::WriteLine( L"Type 'Sample' is generic: {0}", 
       myType->IsGenericType );
   
   // Define type parameters for the type. Until you do this, 
   // the type is not generic, as the preceding and following 
   // WriteLine statements show. The type parameter names are
   // specified as an array of strings. To make the code
   // easier to read, each GenericTypeParameterBuilder is placed
   // in a variable with the same name as the type parameter.
   // 
   array<String^>^typeParamNames = {L"TFirst",L"TSecond"};
   array<GenericTypeParameterBuilder^>^typeParams = 
       myType->DefineGenericParameters( typeParamNames );

   GenericTypeParameterBuilder^ TFirst = typeParams[0];
   GenericTypeParameterBuilder^ TSecond = typeParams[1];

   Console::WriteLine( L"Type 'Sample' is generic: {0}", 
       myType->IsGenericType );
   
   // Apply constraints to the type parameters.
   //
   // A type that is substituted for the first parameter, TFirst,
   // must be a reference type and must have a parameterless
   // constructor.
   TFirst->SetGenericParameterAttributes( 
       GenericParameterAttributes::DefaultConstructorConstraint | 
       GenericParameterAttributes::ReferenceTypeConstraint 
   );

   // A type that is substituted for the second type
   // parameter must implement IExampleA and IExampleB, and
   // inherit from the trivial test class ExampleBase. The
   // interface constraints are specified as an array
   // containing the interface types. 
   array<Type^>^interfaceTypes = { interfaceA, interfaceB };
   TSecond->SetInterfaceConstraints( interfaceTypes );
   TSecond->SetBaseTypeConstraint( baseType );

   // The following code adds a private field named ExampleField,
   // of type TFirst.
   FieldBuilder^ exField = 
       myType->DefineField("ExampleField", TFirst, 
           FieldAttributes::Private);

   // Define a static method that takes an array of TFirst and 
   // returns a List<TFirst> containing all the elements of 
   // the array. To define this method it is necessary to create
   // the type List<TFirst> by calling MakeGenericType on the
   // generic type definition, generic<T> List. 
   // The parameter type is created by using the
   // MakeArrayType method. 
   //
   Type^ listOf = List::typeid;
   Type^ listOfTFirst = listOf->MakeGenericType(TFirst);
   array<Type^>^ mParamTypes = { TFirst->MakeArrayType() };

   MethodBuilder^ exMethod = 
       myType->DefineMethod("ExampleMethod", 
           MethodAttributes::Public | MethodAttributes::Static, 
           listOfTFirst, 
           mParamTypes);

   // Emit the method body. 
   // The method body consists of just three opcodes, to load 
   // the input array onto the execution stack, to call the 
   // List<TFirst> constructor that takes IEnumerable<TFirst>,
   // which does all the work of putting the input elements into
   // the list, and to return, leaving the list on the stack. The
   // hard work is getting the constructor.
   // 
   // The GetConstructor method is not supported on a 
   // GenericTypeParameterBuilder, so it is not possible to get 
   // the constructor of List<TFirst> directly. There are two
   // steps, first getting the constructor of generic<T> List and then
   // calling a method that converts it to the corresponding 
   // constructor of List<TFirst>.
   //
   // The constructor needed here is the one that takes an
   // IEnumerable<T>. Note, however, that this is not the 
   // generic type definition of generic<T> IEnumerable; instead, the
   // T from generic<T> List must be substituted for the T of 
   // generic<T> IEnumerable. (This seems confusing only because both
   // types have type parameters named T. That is why this example
   // uses the somewhat silly names TFirst and TSecond.) To get
   // the type of the constructor argument, take the generic
   // type definition generic<T> IEnumerable and 
   // call MakeGenericType with the first generic type parameter
   // of generic<T> List. The constructor argument list must be passed
   // as an array, with just one argument in this case.
   // 
   // Now it is possible to get the constructor of generic<T> List,
   // using GetConstructor on the generic type definition. To get
   // the constructor of List<TFirst>, pass List<TFirst> and
   // the constructor from generic<T> List to the static
   // TypeBuilder.GetConstructor method.
   //
   ILGenerator^ ilgen = exMethod->GetILGenerator();
        
   Type^ ienumOf = IEnumerable::typeid;
   Type^ TfromListOf = listOf->GetGenericArguments()[0];
   Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf);
   array<Type^>^ ctorArgs = {ienumOfT};

   ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs);
   ConstructorInfo^ ctor = 
       TypeBuilder::GetConstructor(listOfTFirst, ctorPrep);

   ilgen->Emit(OpCodes::Ldarg_0);
   ilgen->Emit(OpCodes::Newobj, ctor);
   ilgen->Emit(OpCodes::Ret);

   // Create the type and save the assembly. 
   Type^ finished = myType->CreateType();
   myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );

   // Invoke the method.
   // ExampleMethod is not generic, but the type it belongs to is
   // generic, so in order to get a MethodInfo that can be invoked
   // it is necessary to create a constructed type. The Example 
   // class satisfies the constraints on TFirst, because it is a 
   // reference type and has a default constructor. In order to
   // have a class that satisfies the constraints on TSecond, 
   // this code example defines the ExampleDerived type. These
   // two types are passed to MakeGenericMethod to create the
   // constructed type.
   //
   array<Type^>^ typeArgs = 
       { Example::typeid, ExampleDerived::typeid };
   Type^ constructed = finished->MakeGenericType(typeArgs);
   MethodInfo^ mi = constructed->GetMethod("ExampleMethod");

   // Create an array of Example objects, as input to the generic
   // method. This array must be passed as the only element of an 
   // array of arguments. The first argument of Invoke is 
   // null, because ExampleMethod is static. Display the count
   // on the resulting List<Example>.
   // 
   array<Example^>^ input = { gcnew Example(), gcnew Example() };
   array<Object^>^ arguments = { input };

   List<Example^>^ listX = 
       (List<Example^>^) mi->Invoke(nullptr, arguments);

   Console::WriteLine(
       "\nThere are {0} elements in the List<Example>.", 
       listX->Count);

   DisplayGenericParameters(finished);
}

/* This code example produces the following output:

Type 'Sample' is generic: False
Type 'Sample' is generic: True

There are 2 elements in the List<Example>.

Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.

Type parameter TFirst:
    ReferenceTypeConstraint
    DefaultConstructorConstraint

Type parameter TSecond:
    Interface constraint: IExampleA
    Interface constraint: IExampleB
    Base type constraint: ExampleBase
 */
using System;
using System.Reflection;
using System.Reflection.Emit;
using System.Collections.Generic;

// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public class ExampleBase {}

public interface IExampleA {}

public interface IExampleB {}

// Define a trivial type that can substitute for type parameter
// TSecond.
//
public class ExampleDerived : ExampleBase, IExampleA, IExampleB {}

public class Example
{
    public static void Main()
    {
        // Define a dynamic assembly to contain the sample type. The
        // assembly will not be run, but only saved to disk, so
        // AssemblyBuilderAccess.Save is specified.
        //
        AppDomain myDomain = AppDomain.CurrentDomain;
        AssemblyName myAsmName = new AssemblyName("GenericEmitExample1");
        AssemblyBuilder myAssembly =
            myDomain.DefineDynamicAssembly(myAsmName,
                AssemblyBuilderAccess.RunAndSave);

        // An assembly is made up of executable modules. For a single-
        // module assembly, the module name and file name are the same
        // as the assembly name.
        //
        ModuleBuilder myModule =
            myAssembly.DefineDynamicModule(myAsmName.Name,
               myAsmName.Name + ".dll");

        // Get type objects for the base class trivial interfaces to
        // be used as constraints.
        //
        Type baseType = typeof(ExampleBase);
        Type interfaceA = typeof(IExampleA);
        Type interfaceB = typeof(IExampleB);

        // Define the sample type.
        //
        TypeBuilder myType =
            myModule.DefineType("Sample", TypeAttributes.Public);

        Console.WriteLine("Type 'Sample' is generic: {0}",
            myType.IsGenericType);

        // Define type parameters for the type. Until you do this,
        // the type is not generic, as the preceding and following
        // WriteLine statements show. The type parameter names are
        // specified as an array of strings. To make the code
        // easier to read, each GenericTypeParameterBuilder is placed
        // in a variable with the same name as the type parameter.
        //
        string[] typeParamNames = {"TFirst", "TSecond"};
        GenericTypeParameterBuilder[] typeParams =
            myType.DefineGenericParameters(typeParamNames);

        GenericTypeParameterBuilder TFirst = typeParams[0];
        GenericTypeParameterBuilder TSecond = typeParams[1];

        Console.WriteLine("Type 'Sample' is generic: {0}",
            myType.IsGenericType);

        // Apply constraints to the type parameters.
        //
        // A type that is substituted for the first parameter, TFirst,
        // must be a reference type and must have a parameterless
        // constructor.
        TFirst.SetGenericParameterAttributes(
            GenericParameterAttributes.DefaultConstructorConstraint |
            GenericParameterAttributes.ReferenceTypeConstraint);

        // A type that is substituted for the second type
        // parameter must implement IExampleA and IExampleB, and
        // inherit from the trivial test class ExampleBase. The
        // interface constraints are specified as an array
        // containing the interface types.
        TSecond.SetBaseTypeConstraint(baseType);
        Type[] interfaceTypes = {interfaceA, interfaceB};
        TSecond.SetInterfaceConstraints(interfaceTypes);

        // The following code adds a private field named ExampleField,
        // of type TFirst.
        FieldBuilder exField =
            myType.DefineField("ExampleField", TFirst,
                FieldAttributes.Private);

        // Define a static method that takes an array of TFirst and
        // returns a List<TFirst> containing all the elements of
        // the array. To define this method it is necessary to create
        // the type List<TFirst> by calling MakeGenericType on the
        // generic type definition, List<T>. (The T is omitted with
        // the typeof operator when you get the generic type
        // definition.) The parameter type is created by using the
        // MakeArrayType method.
        //
        Type listOf = typeof(List<>);
        Type listOfTFirst = listOf.MakeGenericType(TFirst);
        Type[] mParamTypes = {TFirst.MakeArrayType()};

        MethodBuilder exMethod =
            myType.DefineMethod("ExampleMethod",
                MethodAttributes.Public | MethodAttributes.Static,
                listOfTFirst,
                mParamTypes);

        // Emit the method body.
        // The method body consists of just three opcodes, to load
        // the input array onto the execution stack, to call the
        // List<TFirst> constructor that takes IEnumerable<TFirst>,
        // which does all the work of putting the input elements into
        // the list, and to return, leaving the list on the stack. The
        // hard work is getting the constructor.
        //
        // The GetConstructor method is not supported on a
        // GenericTypeParameterBuilder, so it is not possible to get
        // the constructor of List<TFirst> directly. There are two
        // steps, first getting the constructor of List<T> and then
        // calling a method that converts it to the corresponding
        // constructor of List<TFirst>.
        //
        // The constructor needed here is the one that takes an
        // IEnumerable<T>. Note, however, that this is not the
        // generic type definition of IEnumerable<T>; instead, the
        // T from List<T> must be substituted for the T of
        // IEnumerable<T>. (This seems confusing only because both
        // types have type parameters named T. That is why this example
        // uses the somewhat silly names TFirst and TSecond.) To get
        // the type of the constructor argument, take the generic
        // type definition IEnumerable<T> (expressed as
        // IEnumerable<> when you use the typeof operator) and
        // call MakeGenericType with the first generic type parameter
        // of List<T>. The constructor argument list must be passed
        // as an array, with just one argument in this case.
        //
        // Now it is possible to get the constructor of List<T>,
        // using GetConstructor on the generic type definition. To get
        // the constructor of List<TFirst>, pass List<TFirst> and
        // the constructor from List<T> to the static
        // TypeBuilder.GetConstructor method.
        //
        ILGenerator ilgen = exMethod.GetILGenerator();

        Type ienumOf = typeof(IEnumerable<>);
        Type TfromListOf = listOf.GetGenericArguments()[0];
        Type ienumOfT = ienumOf.MakeGenericType(TfromListOf);
        Type[] ctorArgs = {ienumOfT};

        ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs);
        ConstructorInfo ctor =
            TypeBuilder.GetConstructor(listOfTFirst, ctorPrep);

        ilgen.Emit(OpCodes.Ldarg_0);
        ilgen.Emit(OpCodes.Newobj, ctor);
        ilgen.Emit(OpCodes.Ret);

        // Create the type and save the assembly.
        Type finished = myType.CreateType();
        myAssembly.Save(myAsmName.Name+".dll");

        // Invoke the method.
        // ExampleMethod is not generic, but the type it belongs to is
        // generic, so in order to get a MethodInfo that can be invoked
        // it is necessary to create a constructed type. The Example
        // class satisfies the constraints on TFirst, because it is a
        // reference type and has a default constructor. In order to
        // have a class that satisfies the constraints on TSecond,
        // this code example defines the ExampleDerived type. These
        // two types are passed to MakeGenericMethod to create the
        // constructed type.
        //
        Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)};
        Type constructed = finished.MakeGenericType(typeArgs);
        MethodInfo mi = constructed.GetMethod("ExampleMethod");

        // Create an array of Example objects, as input to the generic
        // method. This array must be passed as the only element of an
        // array of arguments. The first argument of Invoke is
        // null, because ExampleMethod is static. Display the count
        // on the resulting List<Example>.
        //
        Example[] input = {new Example(), new Example()};
        object[] arguments = {input};

        List<Example> listX =
            (List<Example>) mi.Invoke(null, arguments);

        Console.WriteLine(
            "\nThere are {0} elements in the List<Example>.",
            listX.Count);

        DisplayGenericParameters(finished);
    }

    private static void DisplayGenericParameters(Type t)
    {
        if (!t.IsGenericType)
        {
            Console.WriteLine("Type '{0}' is not generic.");
            return;
        }
        if (!t.IsGenericTypeDefinition)
        {
            t = t.GetGenericTypeDefinition();
        }

        Type[] typeParameters = t.GetGenericArguments();
        Console.WriteLine("\nListing {0} type parameters for type '{1}'.",
            typeParameters.Length, t);

        foreach( Type tParam in typeParameters )
        {
            Console.WriteLine("\r\nType parameter {0}:", tParam.ToString());

            foreach( Type c in tParam.GetGenericParameterConstraints() )
            {
                if (c.IsInterface)
                {
                    Console.WriteLine("    Interface constraint: {0}", c);
                }
                else
                {
                    Console.WriteLine("    Base type constraint: {0}", c);
                }
            }

            ListConstraintAttributes(tParam);
        }
    }

    // List the constraint flags. The GenericParameterAttributes
    // enumeration contains two sets of attributes, variance and
    // constraints. For this example, only constraints are used.
    //
    private static void ListConstraintAttributes(Type t)
    {
        // Mask off the constraint flags.
        GenericParameterAttributes constraints =
            t.GenericParameterAttributes & GenericParameterAttributes.SpecialConstraintMask;

        if ((constraints & GenericParameterAttributes.ReferenceTypeConstraint)
            != GenericParameterAttributes.None)
        {
            Console.WriteLine("    ReferenceTypeConstraint");
        }

        if ((constraints & GenericParameterAttributes.NotNullableValueTypeConstraint)
            != GenericParameterAttributes.None)
        {
            Console.WriteLine("    NotNullableValueTypeConstraint");
        }

        if ((constraints & GenericParameterAttributes.DefaultConstructorConstraint)
            !=GenericParameterAttributes.None)
        {
            Console.WriteLine("    DefaultConstructorConstraint");
        }
    }
}

/* This code example produces the following output:

Type 'Sample' is generic: False
Type 'Sample' is generic: True

There are 2 elements in the List<Example>.

Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.

Type parameter TFirst:
    ReferenceTypeConstraint
    DefaultConstructorConstraint

Type parameter TSecond:
    Interface constraint: IExampleA
    Interface constraint: IExampleB
    Base type constraint: ExampleBase
 */
Imports System.Reflection
Imports System.Reflection.Emit
Imports System.Collections.Generic

' Define a trivial base class and two trivial interfaces 
' to use when demonstrating constraints.
'
Public Class ExampleBase
End Class

Public Interface IExampleA
End Interface

Public Interface IExampleB
End Interface

' Define a trivial type that can substitute for type parameter 
' TSecond.
'
Public Class ExampleDerived
    Inherits ExampleBase
    Implements IExampleA, IExampleB
End Class

Public Class Example
    Public Shared Sub Main()
        ' Define a dynamic assembly to contain the sample type. The
        ' assembly will not be run, but only saved to disk, so
        ' AssemblyBuilderAccess.Save is specified.
        '
        Dim myDomain As AppDomain = AppDomain.CurrentDomain
        Dim myAsmName As New AssemblyName("GenericEmitExample1")
        Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
            myAsmName, _
            AssemblyBuilderAccess.RunAndSave)

        ' An assembly is made up of executable modules. For a single-
        ' module assembly, the module name and file name are the same 
        ' as the assembly name. 
        '
        Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _
            myAsmName.Name, _
            myAsmName.Name & ".dll")

        ' Get type objects for the base class trivial interfaces to
        ' be used as constraints.
        '
        Dim baseType As Type = GetType(ExampleBase)
        Dim interfaceA As Type = GetType(IExampleA)
        Dim interfaceB As Type = GetType(IExampleB)

        ' Define the sample type.
        '
        Dim myType As TypeBuilder = myModule.DefineType( _
            "Sample", _
            TypeAttributes.Public)

        Console.WriteLine("Type 'Sample' is generic: {0}", _
            myType.IsGenericType)

        ' Define type parameters for the type. Until you do this, 
        ' the type is not generic, as the preceding and following 
        ' WriteLine statements show. The type parameter names are
        ' specified as an array of strings. To make the code
        ' easier to read, each GenericTypeParameterBuilder is placed
        ' in a variable with the same name as the type parameter.
        ' 
        Dim typeParamNames() As String = {"TFirst", "TSecond"}
        Dim typeParams() As GenericTypeParameterBuilder = _
            myType.DefineGenericParameters(typeParamNames)

        Dim TFirst As GenericTypeParameterBuilder = typeParams(0)
        Dim TSecond As GenericTypeParameterBuilder = typeParams(1)

        Console.WriteLine("Type 'Sample' is generic: {0}", _
            myType.IsGenericType)

        ' Apply constraints to the type parameters.
        '
        ' A type that is substituted for the first parameter, TFirst,
        ' must be a reference type and must have a parameterless
        ' constructor.
        TFirst.SetGenericParameterAttributes( _
            GenericParameterAttributes.DefaultConstructorConstraint _
            Or GenericParameterAttributes.ReferenceTypeConstraint)

        ' A type that is substituted for the second type
        ' parameter must implement IExampleA and IExampleB, and
        ' inherit from the trivial test class ExampleBase. The
        ' interface constraints are specified as an array 
        ' containing the interface types.
        TSecond.SetBaseTypeConstraint(baseType)
        Dim interfaceTypes() As Type = {interfaceA, interfaceB}
        TSecond.SetInterfaceConstraints(interfaceTypes)

        ' The following code adds a private field named ExampleField,
        ' of type TFirst.
        Dim exField As FieldBuilder = _
            myType.DefineField("ExampleField", TFirst, _
                FieldAttributes.Private)

        ' Define a Shared method that takes an array of TFirst and 
        ' returns a List(Of TFirst) containing all the elements of 
        ' the array. To define this method it is necessary to create
        ' the type List(Of TFirst) by calling MakeGenericType on the
        ' generic type definition, List(Of T). (The T is omitted with
        ' the GetType operator when you get the generic type 
        ' definition.) The parameter type is created by using the
        ' MakeArrayType method. 
        '
        Dim listOf As Type = GetType(List(Of ))
        Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst)
        Dim mParamTypes() As Type = {TFirst.MakeArrayType()}

        Dim exMethod As MethodBuilder = _
            myType.DefineMethod("ExampleMethod", _
                MethodAttributes.Public Or MethodAttributes.Static, _
                listOfTFirst, _
                mParamTypes)

        ' Emit the method body. 
        ' The method body consists of just three opcodes, to load 
        ' the input array onto the execution stack, to call the 
        ' List(Of TFirst) constructor that takes IEnumerable(Of TFirst),
        ' which does all the work of putting the input elements into
        ' the list, and to return, leaving the list on the stack. The
        ' hard work is getting the constructor.
        ' 
        ' The GetConstructor method is not supported on a 
        ' GenericTypeParameterBuilder, so it is not possible to get 
        ' the constructor of List(Of TFirst) directly. There are two
        ' steps, first getting the constructor of List(Of T) and then
        ' calling a method that converts it to the corresponding 
        ' constructor of List(Of TFirst).
        '
        ' The constructor needed here is the one that takes an
        ' IEnumerable(Of T). Note, however, that this is not the 
        ' generic type definition of IEnumerable(Of T); instead, the
        ' T from List(Of T) must be substituted for the T of 
        ' IEnumerable(Of T). (This seems confusing only because both
        ' types have type parameters named T. That is why this example
        ' uses the somewhat silly names TFirst and TSecond.) To get
        ' the type of the constructor argument, take the generic
        ' type definition IEnumerable(Of T) (expressed as 
        ' IEnumerable(Of ) when you use the GetType operator) and 
        ' call MakeGenericType with the first generic type parameter
        ' of List(Of T). The constructor argument list must be passed
        ' as an array, with just one argument in this case.
        ' 
        ' Now it is possible to get the constructor of List(Of T),
        ' using GetConstructor on the generic type definition. To get
        ' the constructor of List(Of TFirst), pass List(Of TFirst) and
        ' the constructor from List(Of T) to the static
        ' TypeBuilder.GetConstructor method.
        '
        Dim ilgen As ILGenerator = exMethod.GetILGenerator()

        Dim ienumOf As Type = GetType(IEnumerable(Of ))
        Dim listOfTParams() As Type = listOf.GetGenericArguments()
        Dim TfromListOf As Type = listOfTParams(0)
        Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf)
        Dim ctorArgs() As Type = {ienumOfT}

        Dim ctorPrep As ConstructorInfo = _
            listOf.GetConstructor(ctorArgs)
        Dim ctor As ConstructorInfo = _
            TypeBuilder.GetConstructor(listOfTFirst, ctorPrep)

        ilgen.Emit(OpCodes.Ldarg_0)
        ilgen.Emit(OpCodes.Newobj, ctor)
        ilgen.Emit(OpCodes.Ret)

        ' Create the type and save the assembly. 
        Dim finished As Type = myType.CreateType()
        myAssembly.Save(myAsmName.Name & ".dll")

        ' Invoke the method.
        ' ExampleMethod is not generic, but the type it belongs to is
        ' generic, so in order to get a MethodInfo that can be invoked
        ' it is necessary to create a constructed type. The Example 
        ' class satisfies the constraints on TFirst, because it is a 
        ' reference type and has a default constructor. In order to
        ' have a class that satisfies the constraints on TSecond, 
        ' this code example defines the ExampleDerived type. These
        ' two types are passed to MakeGenericMethod to create the
        ' constructed type.
        '
        Dim typeArgs() As Type = _
            {GetType(Example), GetType(ExampleDerived)}
        Dim constructed As Type = finished.MakeGenericType(typeArgs)
        Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")

        ' Create an array of Example objects, as input to the generic
        ' method. This array must be passed as the only element of an 
        ' array of arguments. The first argument of Invoke is 
        ' Nothing, because ExampleMethod is Shared. Display the count
        ' on the resulting List(Of Example).
        ' 
        Dim input() As Example = {New Example(), New Example()}
        Dim arguments() As Object = {input}

        Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments)

        Console.WriteLine(vbLf & _
            "There are {0} elements in the List(Of Example).", _
            listX.Count _
        )

        DisplayGenericParameters(finished)
    End Sub

    Private Shared Sub DisplayGenericParameters(ByVal t As Type)

        If Not t.IsGenericType Then
            Console.WriteLine("Type '{0}' is not generic.")
            Return
        End If
        If Not t.IsGenericTypeDefinition Then _
            t = t.GetGenericTypeDefinition()

        Dim typeParameters() As Type = t.GetGenericArguments()
        Console.WriteLine(vbCrLf & _
            "Listing {0} type parameters for type '{1}'.", _
            typeParameters.Length, t)

        For Each tParam As Type In typeParameters

            Console.WriteLine(vbCrLf & "Type parameter {0}:", _
                tParam.ToString())

            For Each c As Type In tParam.GetGenericParameterConstraints()
                If c.IsInterface Then
                    Console.WriteLine("    Interface constraint: {0}", c)
                Else
                    Console.WriteLine("    Base type constraint: {0}", c)
                End If
            Next

            ListConstraintAttributes(tParam)
        Next tParam
    End Sub

    ' List the constraint flags. The GenericParameterAttributes
    ' enumeration contains two sets of attributes, variance and
    ' constraints. For this example, only constraints are used.
    '
    Private Shared Sub ListConstraintAttributes(ByVal t As Type)

        ' Mask off the constraint flags. 
        Dim constraints As GenericParameterAttributes = _
            t.GenericParameterAttributes And _
            GenericParameterAttributes.SpecialConstraintMask

        If (constraints And GenericParameterAttributes.ReferenceTypeConstraint) _
                <> GenericParameterAttributes.None Then _
            Console.WriteLine("    ReferenceTypeConstraint")

        If (constraints And GenericParameterAttributes.NotNullableValueTypeConstraint) _
                <> GenericParameterAttributes.None Then _
            Console.WriteLine("    NotNullableValueTypeConstraint")

        If (constraints And GenericParameterAttributes.DefaultConstructorConstraint) _
                <> GenericParameterAttributes.None Then _
            Console.WriteLine("    DefaultConstructorConstraint")

    End Sub

End Class

' This code example produces the following output:
'
'Type 'Sample' is generic: False
'Type 'Sample' is generic: True
'
'There are 2 elements in the List(Of Example).
'
'Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
'
'Type parameter TFirst:
'    ReferenceTypeConstraint
'    DefaultConstructorConstraint
'
'Type parameter TSecond:
'    Interface constraint: IExampleA
'    Interface constraint: IExampleB
'    Base type constraint: ExampleBase

Vedi anche