StandardTrainersCatalog.LbfgsPoissonRegression メソッド

定義

オーバーロード

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)

線形回帰モデルを使用してターゲットを予測する高度なオプションを使用して作成 LbfgsPoissonRegressionTrainer します。

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Create LbfgsPoissonRegressionTrainer。線形回帰モデルを使用してターゲットを予測します。

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)

線形回帰モデルを使用してターゲットを予測する高度なオプションを使用して作成 LbfgsPoissonRegressionTrainer します。

public static Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer LbfgsPoissonRegression (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options options);
static member LbfgsPoissonRegression : Microsoft.ML.RegressionCatalog.RegressionTrainers * Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options -> Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer
<Extension()>
Public Function LbfgsPoissonRegression (catalog As RegressionCatalog.RegressionTrainers, options As LbfgsPoissonRegressionTrainer.Options) As LbfgsPoissonRegressionTrainer

パラメーター

catalog
RegressionCatalog.RegressionTrainers

回帰カタログ トレーナー オブジェクト。

options
LbfgsPoissonRegressionTrainer.Options

トレーナーのオプション。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class LbfgsPoissonRegressionWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LbfgsPoissonRegressionTrainer.Options
            {
                LabelColumnName = nameof(DataPoint.Label),
                FeatureColumnName = nameof(DataPoint.Features),
                // Reduce optimization tolerance to speed up training at the cost of
                // accuracy.
                OptimizationTolerance = 1e-4f,
                // Decrease history size to speed up training at the cost of
                // accuracy.
                HistorySize = 30,
                // Specify scale for initial weights.
                InitialWeightsDiameter = 0.2f
            };

            // Define the trainer.
            var pipeline =
                mlContext.Regression.Trainers.LbfgsPoissonRegression(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 1.110
            //   Label: 0.155, Prediction: 0.169
            //   Label: 0.515, Prediction: 0.400
            //   Label: 0.566, Prediction: 0.415
            //   Label: 0.096, Prediction: 0.169

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.10
            //   Mean Squared Error: 0.01
            //   Root Mean Squared Error: 0.11
            //   RSquared: 0.89 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

適用対象

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

Create LbfgsPoissonRegressionTrainer。線形回帰モデルを使用してターゲットを予測します。

public static Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer LbfgsPoissonRegression (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, float l1Regularization = 1, float l2Regularization = 1, float optimizationTolerance = 1E-07, int historySize = 20, bool enforceNonNegativity = false);
static member LbfgsPoissonRegression : Microsoft.ML.RegressionCatalog.RegressionTrainers * string * string * string * single * single * single * int * bool -> Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer
<Extension()>
Public Function LbfgsPoissonRegression (catalog As RegressionCatalog.RegressionTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional l1Regularization As Single = 1, Optional l2Regularization As Single = 1, Optional optimizationTolerance As Single = 1E-07, Optional historySize As Integer = 20, Optional enforceNonNegativity As Boolean = false) As LbfgsPoissonRegressionTrainer

パラメーター

catalog
RegressionCatalog.RegressionTrainers

回帰カタログ トレーナー オブジェクト。

labelColumnName
String

ラベル列の名前。 列データは次の値にする Single必要があります。

featureColumnName
String

フィーチャー列の名前。 列データは既知のサイズの Singleベクトルである必要があります。

exampleWeightColumnName
String

例の重み付け列の名前 (省略可能)。

l1Regularization
Single

L1 正則化 ハイパーパラメーター。 値が大きいほど、モデルがスパースになる傾向があります。

l2Regularization
Single

正則化の L2 重み。

optimizationTolerance
Single

オプティマイザーの収束のしきい値。

historySize
Int32

ヘシアンを推定するために覚えておく必要のある以前のイテレーションの数。 値が小さいほど、より高速ですが、正確な推定値は少なくなります。

enforceNonNegativity
Boolean

負以外の重みを適用します。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class LbfgsPoissonRegression
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.Regression.Trainers.
                LbfgsPoissonRegression(
                labelColumnName: nameof(DataPoint.Label),
                featureColumnName: nameof(DataPoint.Features));

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 1.109
            //   Label: 0.155, Prediction: 0.171
            //   Label: 0.515, Prediction: 0.400
            //   Label: 0.566, Prediction: 0.417
            //   Label: 0.096, Prediction: 0.172

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.07
            //   Mean Squared Error: 0.01
            //   Root Mean Squared Error: 0.08
            //   RSquared: 0.93 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

適用対象