FieldAwareFactorizationMachineTrainer クラス

定義

IEstimator<TTransformer>ストキャスティクス勾配メソッドを使用してトレーニングされたフィールド対応の因子分解モデルを使用してターゲットを予測する。

public sealed class FieldAwareFactorizationMachineTrainer : Microsoft.ML.IEstimator<Microsoft.ML.Trainers.FieldAwareFactorizationMachinePredictionTransformer>
type FieldAwareFactorizationMachineTrainer = class
    interface IEstimator<FieldAwareFactorizationMachinePredictionTransformer>
Public NotInheritable Class FieldAwareFactorizationMachineTrainer
Implements IEstimator(Of FieldAwareFactorizationMachinePredictionTransformer)
継承
FieldAwareFactorizationMachineTrainer
実装

注釈

Input and Output Columns

The input label column data must be Boolean. The input features column data must be a known-sized vector of Single.

This trainer outputs the following columns:

Output Column Name Column Type Description
Score Single The unbounded score that was calculated by the model.
PredictedLabel Boolean The predicted label, based on the sign of the score. A negative score maps to false and a positive score maps to true.
Probability Single The probability calculated by calibrating the score of having true as the label. Probability value is in range [0, 1].

To create this trainer, use FieldAwareFactorizationMachine FieldAwareFactorizationMachine, or FieldAwareFactorizationMachine(Options).

In contrast to other binary classifiers, which can only support one feature column, field-aware factorization machine can consume multiple feature columns. Each column is viewed as a container of some features and such a container is called a field. Note that all feature columns must be float vectors but their dimensions can be different. The motivation of splitting features into different fields is to model features from different distributions independently. For example, in online game store, features created from user profile and those from game profile can be assigned to two different fields.

Trainer Characteristics

機械学習タスク 二項分類
正規化が必要ですか? はい
キャッシュは必要ですか? いいえ
Microsoft に加えて、必要な NuGet。ML なし
ONNX にエクスポート可能 いいえ

Background

Factorization machine family is a powerful model group for supervised learning problems. It was first introduced in Steffen Rendle's Factorization Machines paper in 2010. Later, one of its generalized versions, field-aware factorization machine, became an important predictive module in recent recommender systems and click-through rate prediction contests. For examples, see winning solutions in Steffen Rendle's KDD-Cup 2012 (Track 1 and Track 2), Criteo's, Avazu's, and Outbrain's click prediction challenges on Kaggle.

Factorization machines are especially powerful when feature conjunctions are extremely correlated to the signal you want to predict. An example of feature pairs which can form important conjunctions is user ID and music ID in music recommendation. When a dataset consists of only dense numerical features, usage of factorization machine is not recommended or some featurizations should be performed.

Scoring Function

Field-aware factorization machine is a scoring function which maps feature vectors from different fields to a scalar score. Assume that all $m$ feature columns are concatenated into a long feature vector $\textbf{x} \in {\mathbb R}^n$ and ${\mathcal F}(j)$ denotes the $j$-th feature's field indentifier. The corresponding score is $\hat{y}(\textbf{x}) = \langle \textbf{w}, \textbf{x} \rangle + \sum_{j = 1}^n \sum_{j' = j + 1}^n \langle \textbf{v}_{j, {\mathcal F}(j')}, \textbf{v}_{j', {\mathcal F}(j)} \rangle x_j x_{j'}$, where $\langle \cdot, \cdot \rangle$ is the inner product operator, $\textbf{w} \in {\mathbb R}^n$ stores the linear coefficients, and $\textbf{v}_{j, f}\in {\mathbb R}^k$ is the $j$-th feature's representation in the $f$-th field's latent space. Note that $k$ is the latent dimension specified by the user.

The predicted label is the sign of $\hat{y}$. If $\hat{y} > 0$, this model predicts true. Otherwise, it predicts false.

For a systematic introduction to field-aware factorization machine, please see this paper

Training Algorithm Details

The algorithm implemented in FieldAwareFactorizationMachineTrainer is based on a stochastic gradient method. Algorithm details is described in Algorithm 3 in this online document. The minimized loss function is logistic loss, so the trained model can be viewed as a non-linear logistic regression.

Check the See Also section for links to usage examples.

メソッド

Fit(IDataView)

をトレーニングし、を返し FieldAwareFactorizationMachinePredictionTransformer ます。

Fit(IDataView, IDataView, FieldAwareFactorizationMachineModelParameters)

既にトレーニングまたは検証されたデータを使用してのトレーニングを続行し、を FieldAwareFactorizationMachineTrainer modelParameters 返し FieldAwareFactorizationMachinePredictionTransformer ます。

GetOutputSchema(SchemaShape)

トランスフォーマーのスキーマの伝達。 入力スキーマが提供されたものと同じ場合は、データの出力スキーマを返します。

拡張メソッド

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

"キャッシュチェックポイント" を推定チェーンに追加します。 これにより、ダウンストリームの estimators がキャッシュされたデータに対してトレーニングされます。 複数のデータパスを使用する場合は、トレーナーの前にキャッシュチェックポイントを用意することをお勧めします。

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

推定値を指定した場合は、が呼び出された後にデリゲートを呼び出すラップオブジェクトを返し Fit(IDataView) ます。 多くの場合、推定によってどのような情報が返されるかについての情報を返すことが重要です。これは、メソッドが、 Fit(IDataView) 単純なだけではなく、明示的に型指定されたオブジェクトを返すためです ITransformer 。 同時に、多くのオブジェクトを IEstimator<TTransformer> 含むパイプラインには、多くの場合、estimators のチェーンを構築することが必要になる場合があり EstimatorChain<TLastTransformer> ます。この場合、トランスフォーマーを取得する対象の推定は、このチェーンのどこかに埋もれています。 このシナリオでは、このメソッドを使用して、fit が呼び出されたときに呼び出されるデリゲートをアタッチできます。

適用対象

こちらもご覧ください