오류 코드를 사용 하 여 Azure Machine Learning에서 모듈 예외 문제 해결

Azure Machine Learning Studio (클래식)에서 모듈을 사용 하 여 발생할 수 있는 오류 메시지 및 예외 코드에 대해 알아봅니다.

문제를 해결 하려면이 문서에서 오류를 확인 하 여 일반적인 원인에 대해 알아보세요. Studio (클래식)에서 오류 메시지의 전체 텍스트를 가져오는 방법에는 다음 두 가지가 있습니다.

  • 오른쪽 창에서 출력 로그 보기 링크를 클릭 하 고 아래쪽으로 스크롤합니다. 자세한 오류 메시지는 창의 마지막 두 줄에 표시 됩니다.

  • 오류가 있는 모듈을 선택 하 고 빨간색 X를 클릭 합니다. 관련 오류 텍스트만 표시 됩니다.

오류 메시지 텍스트가 도움이 되지 않으면 컨텍스트와 원하는 추가 또는 변경 내용에 대 한 정보를 보내 주세요. 오류 항목에 대 한 피드백을 제출 하거나 AZURE MACHINE LEARNING STUDIO 포럼 을 방문 하 여 질문을 게시할 수 있습니다.

오류 0001

데이터 세트의 지정된 열 중 하나 이상을 찾을 수 없으면 예외가 발생합니다.

모듈에 대해 하나의 열을 선택했는데 선택한 열이 입력 데이터 세트에 없는 경우, 이 오류가 표시됩니다. 이 오류는 열 이름을 수동으로 입력 했거나 실험을 실행할 때 데이터 집합에 존재 하지 않는 제안 된 열이 열 선택기에 제공 된 경우에 발생할 수 있습니다.

해결 방법: 이 예외가 발생하는 모듈을 다시 방문하여 열 이름이 올바른지 그리고 참조된 모든 열이 존재하는지 확인합니다.

예외 메시지
하나 이상의 지정한 열을 찾을 수 없습니다.
이름 또는 인덱스가 "" 인 열을 {0} 찾을 수 없습니다.
이름 또는 인덱스가 "" 인 열 {0} 이 ""에 없습니다 {1} .

오류 0002

하나 이상의 매개 변수를 구문 분석할 수 없거나 지정한 형식에서 대상 방법 유형에 필요한 형식으로 변환할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 매개 변수를 입력으로 지정하고 값 형식이 예상되는 형식과 차이가 있으며 암시적 변환을 수행할 수 없을 때 발생합니다.

해결 방법: 모듈 요구 사항을 확인하고 필요한 값 형식(문자열, 정수, double 등)을 결정합니다.

예외 메시지
매개 변수를 구문 분석하지 못했습니다.
"" 매개 변수를 구문 분석 하지 못했습니다. {0}
"" {0} 매개 변수를 "" (으)로 구문 분석 (변환) 하지 못했습니다. {1}
"" {0} 매개 변수를 ""에서 "" ( {1} 으)로 변환 하지 못했습니다. {2}
"" {0} 매개 변수 값 ""을 (를) " {1} "에서 "" ( {2} 으 {3} )로 변환 하지 못했습니다.
{0} {1} {2} 제공 된 {3} "" 형식을 사용 하 여 열 ""의 값 ""을 ""에서 "" (으)로 변환 {4} 하지 못했습니다.

오류 0003

하나 이상의 입력이 null이거나 비어 있으면 예외가 발생합니다.

모듈에 대한 입력 또는 매개 변수가 null이거나 비어 있는 경우, Azure Machine Learning에서 이 오류가 표시됩니다. 예를 들어, 매개 변수에 대한 값을 입력하지 않을 때 이 오류가 발생할 수 있습니다. 또한 값이 누락된 데이터 세트 또는 빈 데이터 세트를 선택한 경우에도 이 오류가 발생할 수 있습니다.

해결 방법:

  • 예외가 발생한 모듈을 열고 모든 입력이 지정되었는지 확인합니다. 모든 필수 입력이 지정되어 있는지 확인합니다.
  • Azure Storage에서 로드된 데이터에 액세스할 수 있는지 그리고 계정 이름 또는 키가 변경되지 않았는지 확인합니다.
  • 입력 데이터의 값이 누락되었거나 null인지 확인합니다.
  • 데이터 원본에 대한 쿼리를 사용하는 경우, 데이터가 예상되는 형식으로 반환되는지 확인합니다.
  • 데이터 사양에 오타가 있거나 그 외 변경 사항이 있는지 확인합니다.
예외 메시지
하나 이상의 입력이 null이거나 비어 있습니다.
입력 " {0} "이 (가) null 이거나 비어 있습니다.

오류 0004

매개 변수가 특정 값 이하이면 예외가 발생합니다.

메시지의 매개 변수가 모듈에서 데이터를 처리하는 데 필요한 경계 값보다 낮은 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

해결 방법: 예외가 발생하는 모듈을 다시 방문하고 매개 변수를 지정된 값보다 큰 값으로 수정합니다.

예외 메시지
매개 변수는 경계 값보다 커야 합니다.
매개 변수 " {0} " 값은 보다 커야 합니다 {1} .
"" 매개 변수의 {0} 값이 "" (으)로 {1} 커야 합니다. {2}

오류 0005

매개 변수가 특정 값보다 작으면 예외가 발생합니다.

메시지의 매개 변수가 모듈에서 데이터를 처리하는 데 필요한 경계 값과 같거나 그보다 작은 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

해결 방법: 예외가 발생하는 모듈을 다시 방문하고 매개 변수를 지정된 값과 같거나 그보다 큰 값으로 수정합니다.

예외 메시지
매개 변수는 경계 값과 같거나 그보다 커야 합니다.
매개 변수 " {0} " 값은 보다 크거나 같아야 {1} 합니다.
매개 변수 " {0} "의 값 ""이 (가) {1} 보다 크거나 같아야 {2} 합니다.

오류 0006

매개 변수가 지정된 값과 같거나 그보다 크면 예외가 발생합니다.

메시지의 매개 변수가 모듈에서 데이터를 처리하는 데 필요한 경계 값과 같거나 그보다 큰 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

해결 방법: 예외가 발생하는 모듈을 다시 방문하고 매개 변수를 지정된 값보다 작은 값으로 수정합니다.

예외 메시지
매개 변수가 일치하지 않습니다. 매개 변수 중 하나는 다른 매개 변수보다 작아야 합니다.
매개 변수 " {0} " 값은 매개 변수 "" 값 보다 작아야 합니다 {1} .
매개 변수 " {0} "의 값 ""이 (가) {1} 보다 작아야 {2} 합니다.

오류 0007

매개 변수가 특정 값보다 크면 예외가 발생합니다.

모듈에 대한 속성에서 허용되는 값보다 큰 값을 지정한 경우, Azure Machine Learning에서 이 오류가 표시됩니다. 예를 들어 지원되는 날짜의 범위를 벗어난 데이터를 지정할 수 있으며, 또는 3개의 열만 사용 가능한 경우에는 5개의 열을 사용할 것을 나타낼 수 있습니다.

어떤 면에서 서로 일치해야 하는 두 데이터 세트를 지정하는 경우에도 이 오류가 나타날 수 있습니다. 예를 들어, 열의 이름을 바꾸고 인덱스에 따라 열을 지정하는 경우에는 사용자가 제공하는 이름의 수가 열 인덱스 수와 일치해야 합니다. 2개의 열을 사용하는 수학 연산은 또 다른 예가 될 수 있는데, 이러한 연산에서 각 열에는 동일한 수의 행이 있어야 합니다.

해결 방법:

  • 문제의 모듈을 열고 숫자 속성 설정을 검토합니다.
  • 모든 매개 변수 값이 해당 속성에 대해 지원되는 값의 범위 내에 있는지 확인합니다.
  • 모듈에서 여러 입력을 사용하는 경우, 입력의 크기가 동일한지 확인합니다.
  • 모듈에 설정할 수 있는 속성이 여러 개 있는 경우 관련 속성에 적절 한 값이 있는지 확인 합니다. 예를 들어 그룹 데이터를 bin으로사용 하는 경우 옵션을 사용 하 여 사용자 지정 bin 가장자리를 지정 하는 경우 bin의 수는 bin 경계로 제공 하는 값의 수와 일치 해야 합니다.
  • 데이터 세트 또는 데이터 원본이 변경되었는지 여부를 확인합니다. 열 수, 열 데이터 형식 또는 데이터 크기가 변경된 후에도 경우에 따라서는 이전 버전의 데이터에서 사용된 값이 실패합니다.
예외 메시지
매개 변수가 일치하지 않습니다. 매개 변수 중 하나는 다른 매개 변수와 같거나 그보다 작아야 합니다.
매개 변수 " {0} " 값은 매개 변수 "" 값 보다 작거나 같아야 합니다 {1} .
매개 변수 " {0} "의 값 ""이 (가) {1} 보다 작거나 같아야 {2} 합니다.

오류 0008

매개 변수가 범위 내에 있지 않으면 예외가 발생합니다.

메시지의 매개 변수가 모듈에서 데이터를 처리하는 데 필요한 경계 값을 벗어나는 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

예를 들어 행 추가를 사용하여 열 수가 다른 두 데이터 세트를 결합하려고 할 경우, 이 오류가 표시됩니다.

해결 방법: 예외가 발생하는 모듈을 다시 방문하고 매개 변수를 지정된 범위 내에 있는 값으로 수정합니다.

예외 메시지
매개 변수 값이 지정된 범위에 없습니다.
매개 변수 " {0} " 값이 범위에 없습니다.
매개 변수 " {0} " 값은 [,] 범위에 있어야 합니다 {1} {2} .

오류 0009

Azure Storage 계정 이름 또는 컨테이너 이름을 잘못 지정할 때 예외가 발생합니다.

이 오류는 Azure 저장소 계정에 대 한 매개 변수를 지정할 때 Azure Machine Learning Studio (클래식)에서 발생 하지만 이름이 나 암호를 확인할 수 없습니다. 암호 또는 계정 이름에 대한 오류는 다음과 같은 여러 가지 이유로 발생할 수 있습니다.

  • 계정의 형식이 잘못된 경우. 일부 새로운 계정 유형은 Machine Learning Studio (클래식)에서 사용할 수 없습니다. 자세한 내용은 데이터 가져오기를 참조하세요.
  • 잘못된 계정 이름을 입력한 경우
  • 계정이 더 이상 존재하지 않음
  • 스토리지 계정에 대한 암호가 잘못되었거나 변경된 경우
  • 컨테이너 이름을 지정하지 않았거나 컨테이너가 존재하지 않는 경우
  • 파일 경로(Blob에 대한 경로)를 완전히 지정하지 않은 경우

해결 방법:

이러한 문제들은 계정 이름, 암호 또는 컨테이너 경로를 수동으로 입력하려고 할 때 발생하는 경우가 많습니다. 이름을 조회하고 확인하는 데 도움이 되는 데이터 가져오기 모듈에 대해서는 새 마법사를 사용하는 것이 좋습니다.

계정, 컨테이너 또는 Blob이 삭제되었는지 여부도 확인합니다. 다른 Azure Storage 유틸리티를 사용하여 계정 이름과 암호가 올바르게 입력되었으며 컨테이너가 존재하는지 확인합니다.

Azure Machine Learning에서는 일부 최신 계정 유형이 지원되지 않습니다. 예를 들어, 새로운 "핫" 또는 "콜드" 스토리지 유형은 기계 학습에 사용할 수 없습니다. 클래식 스토리지 계정과 "범용"으로 만들어진 스토리지 계정은 모두 제대로 작동합니다.

Blob에 대한 전체 경로가 지정된 경우, 이 경로가 container/blobname 으로 지정되어 있는지 그리고 컨테이너와 Blob이 모두 계정 내에 존재하는지 확인합니다.

이 경로에는 선행 슬래시가 포함되어서는 안 됩니다. 예를 들어, /container/blob 은 잘못된 입력이며 container/blob 으로 입력해야 합니다.

리소스

지원 되는 다양 한 저장소 옵션에 대 한 설명은 데이터 가져오기 모듈을 사용 하 여 다양 한 온라인 데이터 원본에서 Azure Machine Learning Studio (클래식)로 데이터 가져오기 를 참조 하세요.

샘플 실험

다른 데이터 원본에 연결 하는 방법에 대 한 예제는 Cortana Intelligence Gallery 에서 다음 실험을 참조 하세요.

예외 메시지
Azure Storage 계정 이름 또는 컨테이너 이름이 올바르지 않습니다.
Azure 저장소 계정 이름 " {0} " 또는 컨테이너 이름 " {1} "이 (가) 잘못 되었습니다. 컨테이너/b a s 형식의 컨테이너 이름이 필요 합니다.

오류 0010

입력 데이터 세트에서 일치해야 할 열 이름이 일치하지 않을 경우, 예외가 발생합니다.

메시지의 열 인덱스에 두 입력 데이터 세트의 열 이름이 서로 다를 경우, 이 오류가 Azure Machine Learning에 표시됩니다.

해결 방법: 메타데이터 편집을 사용하거나 지정된 열 인덱스에 대해 동일한 열 이름을 갖도록 원본 데이터 세트를 수정하세요.

예외 메시지
입력 데이터 세트에서 해당하는 인덱스의 열 이름이 다릅니다.
열 이름은 {0} 입력 데이터 집합의 열 (0부터 시작)에 대해 동일 하지 않습니다 {1} {2} .

오류 0011

전달된 열 집합 인수가 데이트 세트 열에 적용되지 않으면 예외가 발생합니다.

지정된 열 선택이 주어진 데이터 세트의 열과 일치하지 않을 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

열을 선택하지 않았으며 모듈이 작동하기 위해 적어도 하나 이상의 열이 필요한 경우에도 이 오류가 발생할 수 있습니다.

해결 방법: 모듈에서 열 선택을 데이터 세트의 열에 적용되도록 수정합니다.

모듈에서 레이블 열과 같이 특정 열을 선택해야 하는 경우, 오른쪽 열이 선택되었는지 확인합니다.

부적절 한 열을 선택 하는 경우 제거 하 고 실험을 다시 실행 합니다.

예외 메시지
지정된 열 집합이 데이터 세트 열에 적용되지 않습니다.
지정 된 열 집합 " {0} "은 (는) 데이터 집합 열에 적용 되지 않습니다.

오류 0012

전달된 인수 집합을 사용하여 클래스 인스턴스를 만들 수 없는 경우에 예외가 발생합니다.

해결 방법: 이 오류는 사용자가 조치를 취할 수 없으며 이후 릴리스에서 더 이상 사용되지 않습니다.

예외 메시지
학습 되지 않은 모델, 먼저 모델을 학습 합니다.
학습 되지 않은 모델 ( {0} ), 학습 된 모델을 사용 합니다.

오류 0013

모듈에 전달된 학습자의 유형이 잘못된 경우에 예외가 발생합니다.

이 오류는 학습된 모델이 연결된 채점 모듈과 호환되지 않을 때마다 발생합니다. 예를 들어 Matchbox 추천 학습 의 출력을 모델 점수 매기기 (matchbox 추천대신)에 연결 하면 실험을 실행할 때이 오류가 생성 됩니다.

해결 방법:

학습 모듈에 의해 생성되는 학습자 유형을 확인하고 학습자에 적합한 채점 모듈을 결정합니다.

특수화된 학습 모듈을 사용하여 모델을 학습한 경우, 학습된 모델을 그에 해당하는 특수화된 채점 모듈에만 연결합니다.

모델 형식 학습 모듈 채점 모듈
분류자 모델 학습 또는 모델 하이퍼 매개 변수 조정 모델 채점
회귀 모델 모델 학습 또는 모델 하이퍼 매개 변수 조정 모델 채점
클러스터링 모델 클러스터링 모델 또는 스윕 클러스터링 학습 클러스터에 데이터 할당
변칙 검색-One-Class SVM 변칙 검색 모델 학습 모델 채점
변칙 검색-PCA 모델 학습 또는 모델 하이퍼 매개 변수 조정 모델 채점
모델을 평가 하려면 몇 가지 추가 단계가 필요 합니다.
변칙 검색-시계열 시계열 변칙 검색 모델은 데이터에서 학습 하 고 점수를 생성 합니다. 이 모듈은 학습 된 학습자를 만들지 않으며 추가 점수가 필요 하지 않습니다.
권장 사항 모델 Matchbox 추천 학습 Matchbox 추천 점수 매기기
이미지 분류 미리 학습된 계단식 이미지 분류 모델 채점
Vowpal Wabbit 모델 Vowpal Wabbit 버전 7-4 모델 학습 Vowpal Wabbit 버전 7-4 모델 점수 매기기
Vowpal Wabbit 모델 Vowpal Wabbit 버전 7-10 모델 학습 Vowpal Wabbit 버전 7-10 모델 점수 매기기
Vowpal Wabbit 모델 Vowpal Wabbit 버전 8 모델 학습 Vowpal Wabbit 버전 8 모델 점수 매기기
예외 메시지
잘못된 유형의 학습자가 전달되었습니다.
학습자 " {0} "에 잘못 된 형식이 있습니다.

오류 0014

열의 고유 값 수가 허용되는 것보다 많으면 예외가 발생합니다.

이 오류는 열에 고유 값이 너무 많이 포함된 경우에 발생합니다. 예를 들어, 하나의 열이 범주 데이터로 처리되도록 지정하며 다만 해당 열에 너무 많은 고유 값이 있어 처리를 완료할 여지가 없는 경우, 이 오류가 표시될 수 있습니다. 두 입력의 고유 값 개수가 서로 일치하지 않을 경우에도 이 오류가 표시될 수 있습니다.

해결 방법:

오류가 발생한 모듈을 열고 입력으로 사용된 열을 식별합니다. 일부 모듈의 경우, 데이터 세트 입력을 마우스 오른쪽 단추로 클릭하고 시각화 를 선택하여 고유 값의 수 및 그 배포를 포함해 개별 열에 대한 통계를 얻을 수 있습니다.

그룹화 또는 분류에 사용할 열의 경우, 각 열에서 고유한 값의 수를 줄이는 단계를 수행합니다. 그 수는 열의 데이터 형식에 따라 여러 가지 방법으로 줄일 수 있습니다.

시나리오와 일치하는 해결 방법을 찾을 수 없습니까? 오류가 발생한 모듈의 이름과 열의 데이터 형식 및 카디널리티를 포함하는 이 항목에 대한 피드백을 제공할 수 있습니다. 여기서는 일반적인 시나리오에 대한 대상으로 지정된 문제 해결 단계를 더 많이 제공하기 위해 이 정보를 사용합니다.

예외 메시지
열 고유 값 수가 허용 되는 값 보다 큽니다.
열의 고유 값 수: ""이 (가) {0} 튜플 수를 초과 {1} 합니다.

오류 0015

데이터베이스 연결이 실패하면 예외가 발생합니다.

잘못된 SQL 계정 이름, 암호, 데이터베이스 서버 또는 데이터베이스 이름을 입력하거나 데이터베이스 또는 서버 문제로 인해 데이터베이스와의 연결을 설정할 수 없는 경우, 이 오류가 표시됩니다.

해결 방법: 계정 이름, 암호, 데이터베이스 서버 및 데이터베이스를 올바르게 입력했는지 그리고 지정된 계정에 올바른 수준의 권한이 있는지 각각 확인하세요. 현재 데이터베이스에 액세스할 수 있는지 확인합니다.

예외 메시지
데이터베이스에 연결하는 중에 오류가 발생했습니다.
데이터베이스 연결을 만드는 동안 오류가 발생 했습니다. {0}

오류 0016

모듈에 전달된 입력 데이터 세트의 열 형식이 호환되어야 함에도 실제로 호환되지 않을 경우, 예외가 발생합니다.

두 개 이상의 데이터 세트에 전달된 열 형식이 서로 호환되지 않는 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

해결 방법: 메타 데이터 편집을 사용 하거나, 원래 입력 데이터 집합을 수정 하거나, 데이터 집합으로 변환 을 사용 하 여 열 유형이 호환 되는지 확인 합니다.

예외 메시지
입력 데이트 세트에서 해당하는 인덱스의 열 형식이 호환되지 않습니다.
{0}및 열 {1} 이 호환 되지 않습니다.
열 요소 형식은 {0} 입력 데이터 집합 (및)의 열 (0부터 시작)에 대해 호환 되지 않습니다 {1} {2} .

오류 0017

선택한 열이 현재 모듈에서 지원하지 않는 데이터 형식을 사용하는 경우, 예외가 발생합니다.

예를 들어, 열 선택이 모듈에서 처리할 수 없는 데이터 형식의 열을 포함하는 경우(예: 수학 연산을 위한 문자열 열 또는 범주별 기능 열이 필요한 점수 열), Azure Machine Learning에서 이 오류가 표시될 수 있습니다.

해결 방법:

  1. 문제가 되는 열을 식별합니다.
  2. 모듈의 요구 사항을 검토합니다.
  3. 요구 사항을 준수하도록 열을 수정합니다. 해당 열 및 수행하려는 변환에 따라 다음과 같은 몇 가지 모듈을 사용하여 변경 내용을 적용해야 할 수도 있습니다.
    • 메타데이터 편집을 사용하여 열의 데이터 형식을 변경하거나 열 용도를 기능에서 숫자로 변경하거나 범주에서 범주 외 등으로 변경합니다.
    • 포함 된 모든 열이 Azure Machine Learning에서 지 원하는 데이터 형식을 사용 하도록 하려면 데이터 집합으로 변환 을 사용 합니다. 열을 변환할 수 없는 경우에는 입력 데이터 집합에서 열을 제거 하는 것이 좋습니다.
    • SQL 변환 적용 또는 R 스크립트 실행 모듈을 사용 하 여 메타 데이터 편집을 통해 수정할 수 없는 열을 캐스트 하거나 변환 합니다. 이러한 모듈은 datetime 데이터 형식으로 작업 하는 데 더 많은 유연성을 제공 합니다.
    • 숫자 데이터 형식의 경우 수학 연산 적용 모듈을 사용 하 여 값을 반올림 하거나 잘라낼 수 있습니다. 또는 클립 값 모듈을 사용 하 여 범위를 벗어난 값을 제거할 수 있습니다.
  4. 최후의 수단으로 원래의 입력 데이터 세트를 수정해야 할 수도 있습니다.

시나리오와 일치하는 해결 방법을 찾을 수 없습니까? 오류가 발생한 모듈의 이름과 열의 데이터 형식 및 카디널리티를 포함하는 이 항목에 대한 피드백을 제공할 수 있습니다. 여기서는 일반적인 시나리오에 대한 대상으로 지정된 문제 해결 단계를 더 많이 제공하기 위해 이 정보를 사용합니다.

예외 메시지
현재 형식의 열을 처리할 수 없습니다. 해당 형식은 모듈에서 지원되지 않습니다.
유형의 열을 처리할 수 없습니다 {0} . 해당 형식은 모듈에서 지원되지 않습니다.
유형의 열 ""을 (를) 처리할 수 없습니다 {1} {0} . 해당 형식은 모듈에서 지원되지 않습니다.
유형의 열 ""을 (를) 처리할 수 없습니다 {1} {0} . 해당 형식은 모듈에서 지원되지 않습니다. 매개 변수 이름: {2}

오류 0018

입력 데이트 세트가 올바르지 않으면 예외가 발생합니다.

해결 방법: Azure Machine Learning에서 이 오류는 여러 상황에서 발생할 수 있으므로 절대적인 해결 방법은 없습니다. 일반적으로 이 오류는 모듈에 대한 입력으로 제공된 데이터의 열 수가 잘못되었거나 데이터 형식이 모듈의 요구 사항과 일치하지 않음을 나타냅니다. 다음은 그 예입니다.

  • 모듈에 레이블 열이 필요하지만 레이블로 표시된 열이 없거나 레이블 열을 아직 선택하지 않았습니다.

  • 모듈을 사용하려면 데이터가 범주별 데이터여야 하지만 실제로는 숫자 데이터입니다.

  • 모듈에는 특정 데이터 형식이 필요 합니다. 예를 들어 Matchbox 추천를 학습 하기 위해 제공 된 등급은 숫자 또는 범주 일 수 있지만 부동 소수점 숫자가 될 수는 없습니다.

  • 데이터의 형식이 잘못되었습니다.

  • 가져온 데이터에 잘못된 문자, 잘못된 값 또는 범위를 벗어난 값이 포함되어 있습니다.

  • 열이 비어 있거나 누락된 값이 너무 많이 포함되어 있습니다.

요구 사항과 데이터 입력 방법을 결정하려면 데이터 세트를 입력으로 사용하는 모듈에 대한 도움말 항목을 검토하세요.

또한 데이터 요약 또는 계산 기본 통계 를 사용 하 여 데이터를 프로 파일링 하 고 이러한 모듈을 사용 하 여 메타 데이터를 수정 하 고 값을 정리 하는 것이 좋습니다. 메타 데이터 편집, 누락 된 데이터 정리, 클립 값

예외 메시지
데이터 세트가 올바르지 않습니다.
{0} 에 잘못 된 데이터가 포함 되어 있습니다.
{0} 및 {1} 은 일관 된 열 단위 여야 합니다.

오류 0019

열이 정렬된 값을 포함해야 하는데 그렇지 않으면 예외가 발생합니다.

지정된 열 값이 순서를 벗어난 경우, 이 오류가 Azure Machine Learning에 표시됩니다.

해결 방법: 입력 데이터 세트를 수동으로 수정하고 모듈을 다시 실행하여 열 값을 정렬합니다.

예외 메시지
열의 값이 정렬되어 있지 않습니다.
열 ""의 값 {0} 이 정렬 되어 있지 않습니다.
데이터 집합 ""의 열 ""에 있는 값 {0} {1} 이 정렬 되어 있지 않습니다.

오류 0020

모듈에 전달된 데이터 세트 중 일부의 열 수가 너무 적으면 예외가 발생합니다.

모듈에 대해 선택된 열이 충분하지 않은 경우, Azure Machine Learning에서 이 오류가 표시됩니다.

해결 방법: 모듈을 다시 방문하여 열 선택기에 올바른 수의 열이 선택되어 있는지 확인합니다.

예외 메시지
입력 데이터 세트의 열 수가 허용되는 최소값보다 적습니다.
입력 데이터 집합의 열 수가 허용 되는 최소 열 수보다 짧습니다 {0} .
입력 데이터 집합 ""의 열 수가 {0} 허용 되는 최소 열 수보다 낮습니다 {1} .

오류 0021

모듈에 전달된 데이터 세트 중 일부의 행 수가 너무 적으면 예외가 발생합니다.

이 오류는 데이터 세트에서 지정된 작업을 수행하는 데 필요한 행이 부족할 때 Azure Machine Learning에 표시됩니다. 예를 들어, 입력 데이터 세트가 비어 있거나 최소 개수의 행이 유효해야 하는 작업을 수행하려는 경우, 이러한 오류가 표시될 수 있습니다. 이러한 작업에는 통계 방법에 기반한 그룹화 또는 분류, 특정 유형의 범주화, 개수로 알아보기 등이 포함될 수 있습니다(단, 이에 국한되지 않음).

해결 방법:

  • 오류를 반환한 모듈을 열고 입력 데이터 세트 및 모듈 속성을 확인합니다.
  • 입력 데이터 세트가 비어 있지 않은지 확인하고, 모듈 도움말에 설명된 요구 사항을 충족할 정도로 충분한 수의 데이터 행이 있는지 확인합니다.
  • 데이터가 외부 소스에서 로드되는 경우, 데이터 원본을 사용할 수 있는지 확인하며 가져오기 프로세스에서 가져올 행 수가 줄어드는 원인이 될만한 데이터 정의상의 오류나 변경은 없는지 확인합니다.
  • 모듈의 데이터 업스트림에서 데이터 형식 또는 값의 수에 영향을 미칠만한 작업(예: 정리, 분할 또는 조인 작업)을 수행하는 경우, 그러한 작업의 출력을 확인하여 반환되는 행의 수를 확인합니다.

오류 0022

입력 데이터 세트에서 선택한 열의 수가 필요한 수와 같지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 다운스트림 모듈 또는 작업에서 특정 개수의 열 또는 입력이 필요할 때 발생할 수 있으며, 사용자가 제공한 열 또는 입력이 너무 적거나 너무 많을 때에도 발생할 수 있습니다. 다음은 그 예입니다.

  • 단일한 레이블 열 또는 키 열을 지정한 후 여러 개의 열을 실수로 선택했습니다.

  • 열 이름을 바꾸고 있지만 실제 존재하는 열의 수보다 더 많거나 더 적은 이름을 제공했습니다.

  • 원본 또는 대상의 열 수가 변경되었거나 모듈에서 사용하는 열 수와 일치하지 않습니다.

  • 쉼표로 구분된 입력값 목록을 제공했지만 값 수가 일치하지 않거나 여러 입력이 지원되지 않습니다.

해결 방법: 모듈을 다시 방문하고 열 선택을 점검하여 올바른 열 수를 선택했는지 확인합니다. 업스트림 모듈의 출력과 다운스트림 작업의 요구 사항을 확인합니다.

여러 열(열 인덱스, 모든 기능, 모든 숫자 등)을 선택할 수 있는 열 선택 옵션 중 한 가지를 사용하는 경우, 선택을 통해 반환된 열의 정확한 수를 확인합니다.

압축 된 데이터 집합의 압축을 풀기위한 입력으로 쉼표로 구분 된 데이터 집합 목록을 지정 하려는 경우 한 번에 하나의 데이터 집합의 압축을 풉니다. 여러 입력이 지원 되지 않습니다.

업스트림 열의 수 또는 형식이 변경되지 않았는지 확인합니다.

권장 데이터 세트를 사용하여 모델을 학습하는 경우, 추천에는 사용자-항목 쌍 또는 사용자-항목 순위에 해당되는 제한된 수의 열이 필요합니다. 모델을 학습하거나 권장 데이터 세트를 분할하기 전에 추가 열을 제거합니다. 자세한 내용은 데이터 분할을 참조하세요.

예외 메시지
입력 데이트 세트에서 선택한 열의 수가 필요한 수와 같지 않습니다.
입력 데이터 집합에서 선택한 열의 수가과 (와) 같지 않습니다 {0} .
열 선택 패턴 " {0} "은 입력 데이터 집합의 선택 된 열 수와 같지 않습니다 {1} .
열 선택 패턴 " {0} "은 {1} 입력 데이터 집합에서 선택한 열을 제공 해야 하는데 {2} 열이 제공 됩니다.

오류 0023

입력 데이터 세트의 대상 열이 현재 강사 모듈에 대해 유효하지 않을 경우, 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 (모듈 매개 변수에서 선택한 것과 같이) 대상 열이 올바른 데이터 형식에 속하지 않거나 누락된 값을 모두 포함하고 있거나 예상대로 범주 열에 해당되지 않는 경우에 발생합니다.

해결 방법: 모듈 입력을 다시 확인하여 레이블/대상 열의 내용을 검사합니다. 이 입력에 누락된 값은 없는지 확인합니다. 모듈에서 대상 열이 범주 열이어야 하는 경우, 대상 열에 둘 이상의 고유 값이 있는지 확인합니다.

예외 메시지
입력 데이트 세트에 지원되지 않는 대상 열이 있습니다.
입력 데이터 집합에 지원 되지 않는 대상 열 ""이 (가) {0} 있습니다.
입력 데이터 집합의 학습자에 대해 지원 되지 않는 대상 열 ""이 (가) {0} {1} 있습니다.

오류 0024

데이터 세트에 레이블 열이 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 모듈에 레이블 열이 필요하고 데이터 세트에 레이블 열이 없을 때 발생합니다. 예를 들어 채점된 데이터 세트를 평가할 경우, 정확도 메트릭을 계산하려면 일반적으로 레이블 열이 있어야 합니다.

또한 레이블 열이 데이터 세트 내에 있더라도 Azure Machine Learning에 의해 올바르게 검색되지 않을 수도 있습니다.

해결 방법:

  • 오류가 발생한 모듈을 열어 레이블 열이 있는지 확인합니다. 이 열에 예측하려는 단일 결과(또는 종속 변수)가 포함되어 있다면 열의 이름 또는 데이터 형식은 중요하지 않습니다. 레이블이 어느 열에 있는지를 모를 경우, 클래스 또는 대상과 같은 일반 이름을 찾습니다.
  • 데이터 세트에 레이블 열이 포함되어 있지 않다면 레이블 열이 명시적으로 또는 실수로 업스트림에서 제거되었을 수도 있습니다. 데이터 세트가 업스트림 채점 모듈의 출력이 아닐 수도 있습니다.
  • 열을 레이블 열로 명시적으로 표시하려면 메타데이터 편집 모듈을 추가하고 데이터 세트를 연결합니다. 레이블 열만 선택하고 필드 드롭다운 목록에서 레이블 을 선택합니다.
  • 잘못된 열이 레이블로 선택된 경우, 필드 에서 레이블 지우기 를 선택하여 열의 메타데이터를 수정할 수 있습니다.
예외 메시지
데이터 세트에 레이블 열이 없습니다.
""에 레이블 열이 없습니다 {0} .

오류 0025

데이터 세트에 점수 열이 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 모델 평가에 대한 입력에 유효한 점수 열이 포함되어 있지 않은 경우에 발생합니다. 예를 들면 사용자가 올바른 학습된 모델을 사용하여 채점되기 전의 데이터 세트를 평가하려고 하거나 점수 열이 명시적으로 업스트림에서 삭제된 경우가 이에 해당됩니다. 이러한 예외는 두 데이터 세트의 점수 열이 호환되지 않을 경우에도 발생합니다. 예를 들어 선형 회귀 변수의 정확도를 이진 분류자의 정확도와 비교 하려고 할 수 있습니다.

해결 방법: 모델 평가에 대한 입력을 다시 확인하고 이 입력에 하나 이상의 점수 열이 포함되어 있는지 검사합니다. 그렇지 않다면 데이터 세트가 채점되지 않았거나 업스트림 모듈에서 점수 열이 삭제된 것입니다.

예외 메시지
데이터 세트에 점수 열이 없습니다.
""에 점수 열이 없습니다 {0} .
""에는 ""로 생성 되는 점수 열이 없습니다 {0} {1} . 올바른 학습자 유형을 사용하여 데이터 세트를 채점합니다.

오류 0026

이름이 같은 열이 허용되지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 여러 열의 이름이 서로 동일한 경우에 발생합니다. 이러한 오류가 발생할 수 있는 경우에 해당되는 한 가지 예는 데이터 세트에 헤더 행이 없고 열 이름이 다음과 같이 자동으로 할당되는 경우입니다. Col0, Col1 등

해결 방법: 열 이름이 서로 동일한 경우, 입력 데이터 세트와 모듈 간에 메타데이터 편집 모듈을 삽입합니다. 메타데이터 편집의 열 선택기를 사용하여 이름을 바꿀 열을 선택하고 새 이름을 새 열 이름 텍스트 상자에 입력합니다.

예외 메시지
같은 열 이름이 인수에 지정되어 있습니다. 같은 열 이름은 모듈에서 허용되지 않습니다.
"" 및 "" 인수에 같은 열 이름은 {0} {1} 사용할 수 없습니다. 다른 이름을 지정 하십시오.

오류 0027

두 개체의 크기가 같아야 하는데 실제로는 차이가 있다면 예외가 발생합니다.

이 오류는 Azure Machine Learning의 일반적인 오류 이며 많은 조건으로 인해 발생할 수 있습니다.

해결 방법: 특정한 해결 방법은 없습니다. 다만 다음과 같은 조건을 확인할 수 있습니다.

  • 열 이름을 바꾸는 경우, 각 목록(입력 열과 새 이름 목록)에 동일한 수의 항목이 있는지 확인합니다.

  • 두 개의 데이터 세트를 조인하거나 연결하는 경우, 동일한 스키마가 있는지 확인합니다.

  • 여러 열이 있는 두 데이터 세트를 조인하는 경우, 키 열에 동일한 데이터 형식이 있는지 확인하고 선택 영역에서 중복 항목을 허용하고 열 순서 유지 옵션을 선택합니다.

예외 메시지
전달된 개체의 크기가 일치하지 않습니다.
""의 크기가 {0} ""의 크기와 일치 하지 않습니다 {1} .

오류 0028

열 집합에서 열 이름이 중복되지 않아야 하며, 중복되는 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 열 이름이 중복될 때(즉, 고유하지 않을 때) 발생합니다.

해결 방법: 이름이 같은 열이 있다면 입력 데이터 세트와 오류가 발생하는 모듈 사이에 메타데이터 편집 인스턴스를 추가합니다. 메타데이터 편집의 열 선택기를 사용하여 이름을 바꿀 열을 선택하고 새 열 이름을 새 열 이름 텍스트 상자에 입력합니다. 여러 열의 이름을 바꾸는 경우, 새 열 이름 에 입력하는 값이 고유한 값인지 확인합니다.

예외 메시지
열 집합에 중복된 열 이름이 있습니다.
이름 " {0} "이 (가) 중복 되었습니다.
이름 "" {0} 은 (는) ""에서 중복 됩니다 {1} .

오류 0029

잘못된 URI가 전달되면 예외가 발생합니다.

잘못된 URI가 전달되는 경우 Azure Machine Learning에서 이 오류가 발생합니다. 다음 조건 중 하나에 해당 하는 경우이 오류가 표시 됩니다. 또는.

  • 읽기 또는 쓰기를 위해 Azure Blob Storage에 제공된 공용 URI 또는 SAS URI에 오류가 포함되어 있습니다.

  • SAS의 기간이 만료되었습니다.

  • HTTP 소스를 통한 웹 URL은 파일 또는 루프백 URI를 나타냅니다.

  • HTTP를 통한 웹 URL에 잘못된 형식의 URL이 포함되어 있습니다.

  • 원격 소스에서 URL을 확인할 수 없습니다.

해결 방법: 모듈을 다시 방문하여 URI의 형식을 확인합니다. 데이터 원본이 HTTP를 통해 연결되는 웹 URL인 경우, 의도한 원본이 파일 또는 루프백 URI(localhost)가 아닌지 확인합니다.

예외 메시지
잘못된 URI가 전달되었습니다.

오류 0030

파일을 다운로드할 수 없는 경우 예외가 발생합니다.

Azure Machine Learning에서 이 예외는 파일을 다운로드할 수 없는 경우에 발생합니다. 세 번의 재시도 후에 HTTP 소스에서 읽기 시도가 실패하면 이 예외가 표시됩니다.

해결 방법: HTTP 소스에 대한 URI가 올바르며 현재 인터넷을 통해 사이트에 액세스할 수 있는지 확인합니다.

예외 메시지
파일을 다운로드할 수 없습니다.
파일을 다운로드 하는 동안 오류가 발생 했습니다 {0} .

오류 0031

열 집합의 열 수가 필요한 수보다 적으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 선택한 열 수가 필요한 것보다 적으면 발생합니다. 필요한 최소 열 수를 선택하지 않으면 이 오류가 표시됩니다.

해결 방법: 열 선택기 를 사용하여 열 선택 영역에 열을 더 추가합니다.

예외 메시지
열 집합의 열 수가 필요한 수보다 적습니다.
{0} 열을 지정 해야 합니다. 실제로 지정된 열 수는 {1}개입니다.

오류 0032

인수가 숫자가 아니면 예외가 발생합니다.

Azure Machine Learning에서 인수가 double 또는 NaN이면 이 오류가 표시됩니다.

해결 방법: 유효한 값을 사용하도록 지정된 인수를 수정합니다.

예외 메시지
인수가 숫자가 아닙니다.
" {0} "은 (는) 숫자가 아닙니다.

오류 0033

인수가 무한 값이면 예외가 발생합니다.

Azure Machine Learning에서 인수가 무한 값인 경우 이 오류가 발생합니다. 인수가 double.NegativeInfinity 또는 double.PositiveInfinity에 해당되면 이 오류가 표시됩니다.

해결 방법: 유효한 값이 되도록 지정된 인수를 수정합니다.

예외 메시지
인수는 유한해야 합니다.
" {0} "는 유한 하지 않습니다.

오류 0034

지정된 사용자-항목 쌍에 대해 등급이 두 개 이상인 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 사용자-항목 쌍에 둘 이상의 등급 값이 있다면 권장 시 발생합니다.

해결 방법: 사용자-항목 쌍에 하나의 등급 값만 있는지 확인합니다.

예외 메시지
데이터 세트의 값에 대한 등급이 둘 이상입니다.
{0}등급 예측 데이터 테이블에 사용자 및 항목에 대 한 등급이 두 개 이상 {1} 있습니다.

오류 0035

지정된 사용자나 항목에 대해 기능을 제공하지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 채점에 추천 모델을 사용하려고 시도하지만 기능 벡터를 찾을 수 없는 경우에 발생합니다.

해결 방법:

Matchbox 추천에는 항목 기능 또는 사용자 기능 중 하나를 사용할 때 반드시 충족해야 하는 특정 요구 사항이 있습니다. 이 오류는 입력으로 제공한 사용자 또는 항목에 대한 기능 벡터가 없음을 나타냅니다. 각 사용자 또는 항목에 대 한 데이터에서 기능 벡터를 사용할 수 있는지 확인 해야 합니다.

예를 들어 사용자의 나이, 위치 또는 수입 등의 기능을 사용하여 추천 모델을 학습했지만 학습 중에 표시되지 않은 새 사용자에 대한 점수를 만들려는 경우, 해당 사용자에 대한 적절한 예측을 수행하기 위해 새 사용자에 대해 이와 동등한 기능 집합(예: 나이, 위치 및 수입 값)을 제공해야 합니다.

이러한 사용자에 대한 기능이 없는 경우, 기능 엔지니어링을 통해 적절한 기능을 생성하는 것이 좋습니다. 예를 들어 개별 사용자 사용 기간 또는 수입 값이 없는 경우, 사용자 그룹에 사용할 근사값을 생성할 수 있습니다.

권장 구성 모드의 점수를 매길 때 학습 중에 이전에 항목 또는 사용자 기능을 사용한 경우에만 항목 또는 사용자 기능을 사용할 수 있습니다. 자세한 내용은 Matchbox 추천 점수 매기기를 참조 하세요.

Matchbox 권장 알고리즘의 작동 방식 및 항목 기능 또는 사용자 기능 데이터 집합을 준비 하는 방법에 대 한 일반적인 내용은 Matchbox 추천 학습을 참조 하세요.

귀하의 사례에 적용할 수 없는 해결 방법인가요? 이 문서에 대한 사용자 의견을 언제든지 보내주시기 바라며 모듈 및 열의 행 수를 포함해 시나리오에 대한 정보를 제공해주시기 바랍니다. 저희는 이 정보를 사용하여 향후 더 자세한 문제 해결 단계를 제공할 것입니다.

예외 메시지
필요한 사용자 또는 항목에 대해 기능을 제공하지 않았습니다.
{0}필요 하지만 제공 되지 않은 기능입니다.

오류 0036

지정된 사용자나 항목에 대해 여러 개의 기능 벡터가 제공된 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 기능 벡터가 두 번 이상 정의된 경우에 발생합니다.

해결 방법: 기능 벡터가 두 번 이상 정의되지는 않았는지 확인합니다.

예외 메시지
사용자 또는 항목에 대한 기능 정의가 중복됩니다.
의 기능 정의가 중복 되었습니다 {0} .

오류 0037

레이블 열이 하나만 허용되는데 여러 개를 지정하면 오류가 발생합니다.

Azure Machine Learning에서 이 오류는 두 개 이상의 열을 새 레이블 열로 선택한 경우에 발생합니다. 대부분의 감독된 학습 알고리즘에서는 단일 열을 대상 또는 레이블로 표시해야 합니다.

해결 방법: 단일 열을 새 레이블 열로 선택해야 합니다.

예외 메시지
여러 개의 레이블 열을 지정했습니다.

오류 0038

필요한 요소 수가 정확한 값이어야 하는데 그렇지 않으면 예외가 발생합니다.

이 오류는 예상 되는 요소 수가 정확한 값 이어야 하지만 그렇지 않은 경우에 발생 합니다 Azure Machine Learning. 요소 수가 올바른 예상 값과 같지 않으면이 오류가 표시 됩니다.

해결 방법: 올바른 요소 수를 포함 하도록 입력을 수정 합니다.

예외 메시지
요소 수가 올바르지 않습니다.
""의 요소 수가 {0} 잘못 되었습니다.
""의 요소 수가 {0} 올바른 요소 수와 같지 않습니다 {1} .

오류 0039

작업이 실패하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 내부 작업을 완료할 수 없을 때 발생합니다.

해결 방법: 이 오류는 다양한 조건으로 인해 발생하며 특정 해결 방법이 없습니다.
다음 표에는 이 오류에 대한 일반 메시지가 포함되어 있으며 그 뒤에는 조건에 대한 특정 설명이 표시됩니다.

세부 정보를 사용할 수 없는 경우 사용자 의견을 보내고 오류 및 관련 조건을 생성 한 모듈에 대 한 정보를 제공 합니다.

예외 메시지
작업이 실패했습니다.
작업을 완료 하는 동안 오류가 발생 했습니다. {0}

오류 0040

사용되지 않는 모듈을 호출하려고 하면 예외가 발생합니다.

이 오류 Azure Machine Learning는 사용 되지 않는 모듈을 호출할 때 생성 됩니다.

해결 방법: 사용 되지 않는 모듈을 지원 되는 것으로 바꿉니다. 대신 사용 하는 모듈에 대 한 정보는 모듈 출력 로그를 참조 하세요.

예외 메시지
사용되지 않는 모듈에 액세스하려고 했습니다.
" {0} " 모듈은 더 이상 사용 되지 않습니다. "" 모듈 {1} 을 대신 사용 합니다.

오류 0041

사용되지 않는 모듈을 호출하려고 하면 예외가 발생합니다.

이 오류 Azure Machine Learning는 사용 되지 않는 모듈을 호출할 때 생성 됩니다.

해결 방법: 사용 되지 않는 모듈을 지원 되는 집합으로 바꿉니다. 이 정보는 모듈 출력 로그에 표시 되어야 합니다.

예외 메시지
사용되지 않는 모듈에 액세스하려고 했습니다.
" {0} " 모듈은 더 이상 사용 되지 않습니다. 요청 된 기능에 "" 모듈을 사용 {1} 합니다.

오류 0042

열을 다른 형식으로 변환할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 열을 지정된 형식으로 변환할 수 없는 경우에 발생합니다. 모듈에 날짜/시간, 문자, 부동 소수점 숫자 또는 정수와 같은 특정 데이터 형식이 필요하지만 기존 열을 필수 형식으로 변환할 수 없는 경우에 이 오류가 표시됩니다.

예를 들어, 하나의 열을 선택하고 수학 연산에 사용하기 위해 숫자 데이터 유형으로 변환하려는 시도를 할 수 있는데, 유효하지 않은 데이터가 열에 포함된 경우에는 이 오류가 발생합니다.

한편, 부동 소수점 숫자나 많은 고유 값을 포함하는 열을 범주 열로 사용하려고 할 때 이 오류가 발생할 수 있습니다.

해결 방법:

  • 오류가 발생한 모듈에 대한 도움말 페이지를 열어 데이터 형식 요구 사항을 확인합니다.
  • 입력 데이터 세트에 있는 열의 데이터 형식을 검토합니다.
  • 이른바 스키마 없는 데이터 원본에서 가져온 데이터를 검사합니다.
  • 데이터 세트에서 원하는 데이터 형식으로의 변환을 차단할 수 있는 특수 문자 또는 누락된 값이 있는지 확인합니다.
    • 숫자 데이터 형식은 일치해야 합니다. 예를 들면 정수 열에서 부동 소수점 숫자를 확인합니다.
    • 숫자 열에서 텍스트 문자열 또는 NA 값이 있는지 확인합니다.
    • 부울 값을 필요한 데이터 형식에 따라 적절한 표현으로 변환할 수 있습니다.
    • 텍스트 열에서 유니코드 외 문자, 탭 문자 또는 제어 문자가 있는지 검사합니다.
    • 날짜/시간 데이터는 모델링 오류가 발생하지 않도록 일관성을 유지해야 하며, 다만 정리는 다양한 형식으로 인해 복잡해질 수 있습니다. R 스크립트 실행 또는 Python 스크립트 실행 모듈을 사용 하 여 정리를 수행 하는 것이 좋습니다.
  • 필요하다면 열을 성공적으로 변환할 수 있도록 입력 데이터 세트의 값을 수정합니다. 수정에는 범주화, 잘림 또는 반올림 작업, 이상값 제거 또는 누락된 값의 대체가 포함될 수 있습니다. 기계 학습에서 몇 가지 일반적인 데이터 변환 시나리오에 관한 설명은 다음 문서들을 참조하세요.

해결 방법이 불명확하거나 귀하의 사례에 적용할 수 없는 방법인가요? 이 문서에 대한 사용자 의견을 언제든지 보내주시기 바라며 모듈 및 열의 데이터 형식을 포함해 시나리오에 대한 정보를 제공해주시기 바랍니다. 저희는 이 정보를 사용하여 향후 더 자세한 문제 해결 단계를 제공할 것입니다.

예외 메시지
허용되지 않는 변환입니다.
유형의 열을 유형의 열로 변환할 수 없습니다 {0} {1} .
유형의 열 " {2} " {0} 을 (를) 유형의 열로 변환할 수 없습니다 {1} .
유형의 열 " {2} " {0} 을 (를) 유형의 열 "" (으)로 변환할 수 없습니다 {3} {1} .

오류 0043

요소 형식에서 Equals를 명시적으로 구현하지 않으면 예외가 발생합니다.

Azure Machine Learning에서이 오류는 사용 되지 않으며 더 이상 사용 되지 않습니다.

해결 방법: 없음

예외 메시지
액세스 가능한 명시적 메서드 Equals가 없습니다.
형식의 열 ""에 대 한 값을 비교할 수 없습니다 \ {0} \ {1} . 액세스 가능한 명시적 메서드 Equals가 없습니다.

오류 0044

기존 값에서 열의 요소 형식을 파생할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 데이터 세트에서 열의 형식을 유추할 수 없을 때 발생합니다. 이는 대체로 요소 형식이 서로 다른 두 개 이상의 데이터 세트를 연결할 때 발생합니다. Azure Machine Learning에서 정보 손실 없이 열에 있는 모든 값을 나타낼 수 있는 공용 형식을 판정할 수 없는 경우에 이 오류가 생성됩니다.

해결 방법: 결합되는 두 데이터 세트의 지정된 열에 있는 모든 값이 동일한 형식(숫자, 부울, 범주, 문자열, 날짜 등)에 속하거나 동일한 형식으로 강제 변환될 수 있는지 확인하세요.

예외 메시지
열의 요소 형식을 파생할 수 없습니다.
열 ""에 대해 요소 형식을 파생할 수 없습니다 {0} . 모든 요소가 null 참조입니다.
"" 데이터 집합의 "" 열에 대해 요소 형식을 파생할 수 없습니다 {0} {1} . 모든 요소가 null 참조입니다.

오류 0045

소스의 요소 형식이 혼합되어 있어 열을 만들 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 결합되는 두 데이터 세트의 요소 형식이 서로 다른 경우에 생성됩니다.

해결 방법: 결합되는 두 데이터 세트의 지정된 열에 있는 모든 값이 동일한 형식(숫자, 부울, 범주, 문자열, 날짜 등)에 속하는지 확인하세요.

예외 메시지
혼합 요소 형식으로 열을 만들 수 없습니다.
혼합 요소 형식의 ID가 "" 인 열을 만들 수 없습니다 {0} . \ n \t 데이터 형식 [ {1} , {0} ]은 {2} \n \t 데이터 형식 [ {3} , {0} ]은 {4} 입니다.

오류 0046

지정한 경로에 디렉터리를 만들 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 지정된 경로에서 디렉터리를 만들 수 없을 때 발생합니다. Hive 쿼리의 출력 디렉터리에 대한 경로 중 하나라도 잘못되었거나 액세스할 수 없는 경우 이 오류가 표시됩니다.

해결 방법: 모듈을 다시 방문하여 디렉터리 경로의 형식이 올바르며 현재 자격 증명을 사용하여 액세스할 수 있는지 확인합니다.

예외 메시지
올바른 출력 디렉터리를 지정 하십시오.
디렉터리: {0} 을 (를) 만들 수 없습니다. 올바른 경로를 지정 하십시오.

오류 0047

모듈에 전달된 데이터 세트 중 일부의 기능 열 수가 너무 적으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 알고리즘에 필요한 최소 열 수가 학습을 위한 입력 데이터 세트에 포함되어 있지 않은 경우에 발생합니다. 일반적으로 데이터 세트는 비어 있거나 학습 열만 포함합니다.

해결 방법: 입력 데이터 집합을 다시 방문 하 여 하나 이상의 추가 열이 레이블 열과 떨어져 있는지 확인 합니다.

예외 메시지
입력 데이터 세트의 기능 열 수가 허용되는 최소값보다 적습니다.
입력 데이터 집합의 기능 열 수가 허용 되는 최소 열 수보다 낮습니다 {0} .
입력 데이터 집합 ""의 기능 열 수가 {0} 허용 되는 최소 열 수보다 낮습니다 {1} .

오류 0048

파일을 열 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 읽기 또는 쓰기를 위한 파일을 열 수 없을 때 발생합니다. 다음과 같은 이유로 이 오류가 표시될 수 있습니다.

  • 컨테이너 또는 파일(Blob)이 없음

  • 파일이나 컨테이너의 액세스 수준에서 파일에 액세스할 수 없음

  • 파일이 너무 커서 읽을 수 없거나 형식이 잘못됨

해결 방법: 읽으려는 모듈 및 파일을 다시 확인합니다.

컨테이너 및 파일의 이름이 올바른지 확인합니다.

Azure 클래식 포털 또는 Azure Storage 도구를 사용해 파일에 액세스할 수 있는 권한이 있는지 확인합니다.

이미지 파일을 읽으려고 하는 경우 이미지 파일의 크기, 픽셀 수 등의 요구 사항을 충족 하는지 확인 합니다. 자세한 내용은 이미지 가져오기를 참조 하세요.

예외 메시지
파일을 열 수 없습니다.
파일을 여는 동안 오류가 발생 했습니다 {0} .

오류 0049

파일을 구문 분석할 수 없는 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 파일을 구문 분석할 수 없을 때 발생합니다. 데이터 가져오기 모듈에서 선택한 파일 형식이 파일의 실제 형식과 일치하지 않거나 인식할 수 없는 문자가 파일에 포함된 경우 이 오류가 표시됩니다.

해결 방법: 모듈을 다시 방문하여 파일 형식과 일치하지 않는 경우 파일 형식 선택을 수정합니다. 가능하다면 파일을 검사하여 잘못된 문자가 포함되어 있지는 않은지 확인합니다.

예외 메시지
파일을 구문 분석할 수 없습니다.
파일을 구문 분석 하는 동안 오류가 발생 했습니다 {0} .

오류 0050

입력 파일과 출력 파일이 같으면 예외가 발생합니다.

해결 방법: Azure Machine Learning에서이 오류는 사용 되지 않으며 더 이상 사용 되지 않습니다.

예외 메시지
입력 및 출력에 대해 지정한 파일은 같을 수 없습니다.

오류 0051

여러 출력 파일이 같으면 예외가 발생합니다.

해결 방법: Azure Machine Learning에서이 오류는 사용 되지 않으며 더 이상 사용 되지 않습니다.

예외 메시지
출력에 대해 지정한 파일은 같을 수 없습니다.

오류 0052

Azure Storage 계정 키를 잘못 지정하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Azure Storage 계정에 액세스하는 데 사용된 키가 잘못된 경우에 발생합니다. 예를 들어, 복사 후 붙여넣기를 할 때 Azure Storage 키가 잘렸거나 잘못된 키가 사용된 경우, 이 오류가 표시될 수 있습니다.

Azure Storage 계정의 키를 얻는 방법에 대한 자세한 내용은 스토리지 액세스 키 보기, 복사 및 다시 생성을 참조하세요.

해결 방법: 모듈을 다시 방문하여 계정에 대한 Azure Storage 키가 올바른지 확인합니다. 필요하다면 Azure 클래식 포털에서 키를 다시 복사합니다.

예외 메시지
Azure Storage 계정 키가 잘못되었습니다.

오류 0053

Matchbox 추천을 위한 사용자 기능이나 항목이 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 기능 벡터를 찾을 수 없을 때 생성됩니다.

해결 방법: 기능 벡터가 입력 데이터 세트에 존재하는지 확인합니다.

예외 메시지
사용자 기능 및/또는 항목이 필요하지만 제공되지 않았습니다.

오류 0054

열에 불연속 값이 너무 적어 작업을 완료할 수 없으면 예외가 발생합니다.

해결 방법: Azure Machine Learning에서이 오류는 사용 되지 않으며 더 이상 사용 되지 않습니다.

예외 메시지
데이터의 지정한 열에 불연속 값이 너무 적어 작업을 완료할 수 없습니다.
데이터의 지정한 열에 불연속 값이 너무 적어 작업을 완료할 수 없습니다. 필요한 최소 요소는 {0} 요소입니다.
데이터의 "{1}" 열에 고유 값이 너무 적어 작업을 완료할 수 없습니다. 필요한 최소 요소는 {0} 요소입니다.

오류 0055

사용되지 않는 모듈을 호출하려고 하면 예외가 발생합니다.

이 Azure Machine Learning 오류는 더 이상 사용 되지 않는 모듈을 호출 하려고 할 때 나타납니다.

해결 방법:

예외 메시지
사용되지 않는 모듈에 액세스하려고 했습니다.
" {0} " 모듈은 더 이상 사용 되지 않습니다.

오류 0056

작업에 대해 선택한 열이 요구 사항을 위반하는 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 열을 특정 데이터 형식으로 사용해야 하는 작업의 열을 선택할 때 발생합니다.

또한 열이 올바른 데이터 형식에 해당되지만 사용 중인 모듈에서 해당 열을 기능, 레이블 또는 범주 열로 표시해야 할 경우에도 이 오류가 발생할 수 있습니다.

예를 들어 표시기 값으로 변환 모듈을 사용 하려면 열이 범주 여야 하 고 기능 열 또는 레이블 열을 선택 하는 경우이 오류가 발생 합니다.

해결 방법:

  1. 현재 선택한 열의 데이터 형식을 검토합니다.

  2. 선택한 열이 범주, 레이블 또는 기능 열에 해당되는지 여부를 확인합니다.

  3. 열을 선택한 모듈에 대한 도움말 항목을 검토하여 데이터 형식 또는 열 사용에 대한 특정 요구 사항이 있는지 확인합니다.

  4. 메타데이터 편집을 사용하여 이 작업 기간에 대한 열 형식을 변경합니다. 다운스트림 작업에 필요하다면 메타데이터 편집의 다른 인스턴스를 사용하여 열 형식을 원래 값으로 다시 변경하세요.

예외 메시지
하나 이상의 선택한 열이 허용되는 범주에 포함되지 않습니다.
이름이 "" 인 열 {0} 은 허용 되는 범주에 포함 되어 있지 않습니다.

오류 0057

이미 있는 파일 또는 Blob을 만들려고 시도하는 경우 예외가 발생합니다.

이 예외는 데이터 내보내기 모듈이 나 기타 모듈을 사용 하 여 Azure Machine Learning 실험 결과를 Azure blob 저장소에 저장할 때 발생 하지만 이미 존재 하는 파일이 나 blob을 만들려고 시도 하는 경우에 발생 합니다.

해결 방법:

이 오류는 이전에 Azure Blob Storage 쓰기 모드 속성을 오류 로 설정한 경우에만 표시됩니다. 기본적으로 이미 존재하는 Blob에 데이터 세트를 쓰려고 하면 이 모듈에서 오류가 발생합니다.

  • 모듈 속성을 열고 Azure Blob Storage 쓰기 모드 속성을 덮어쓰기 로 변경합니다.
  • 또는 다른 대상 Blob 또는 파일의 이름을 입력할 수 있으며, 아직 존재하지 않는 Blob을 반드시 지정해야 합니다.
예외 메시지
파일 또는 Blob가 이미 있습니다.
파일 또는 Blob " {0} "이 (가) 이미 있습니다.

오류 0058

Azure Machine Learning에서 이 오류는 데이터 세트에 필요한 레이블 열이 포함되어 있지 않은 경우에 발생합니다.

제공된 레이블 열이 학습자에 필요한 데이터 또는 데이터 유형과 일치하지 않거나 잘못된 값을 갖는 경우에도 이 예외가 발생할 수 있습니다. 예를 들어, 이 예외는 이진 분류자를 학습할 경우 실제 값 레이블 열을 사용할 때 생성됩니다.

해결 방법: 해결 방법은 사용 중인 학습자 또는 강사 그리고 데이터 세트에 있는 열의 데이터 유형에 따라 달라집니다. 먼저 기계 학습 알고리즘 또는 학습 모듈의 요구 사항을 확인합니다.

입력 데이터 세트를 다시 확인합니다. 레이블로 간주될 열에 지금 만들고 있는 모델에 대한 올바른 데이터 형식이 있는지 확인합니다.

누락된 값에 대한 입력을 확인하고 필요하다면 이를 제거하거나 바꿉니다.

필요하다면 메타데이터 편집 모듈을 추가하고 레이블 열이 레이블로 표시되어 있는지 확인합니다.

예외 메시지
필요한 레이블 열이 아닙니다.
""에서 레이블 열이 예상과 다른 경우 {0}
레이블 열 " {0} "은 (는) ""에 사용할 수 없습니다 {1} .

오류 0059

열 선택기에서 지정한 열 인덱스를 구문 분석할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 열 선택기를 사용할 때 지정된 열 인덱스를 구문 분석할 수 없는 경우에 발생합니다. 열 인덱스가 구문 분석할 수 없는 잘못된 형식인 경우, 이 오류가 표시됩니다.

해결 방법: 유효한 인덱스 값을 사용하도록 열 인덱스를 수정합니다.

예외 메시지
하나 이상의 지정된 열 인덱스 또는 인덱스 범위를 구문 분석할 수 없습니다.
열 인덱스 또는 범위 " {0} "을 (를) 구문 분석할 수 없습니다.

오류 0060

열 선택기에서 범위를 벗어난 열 범위를 지정하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 범위를 벗어난 열 범위가 열 선택기에 지정된 경우에 발생합니다. 열 선택기의 열 범위가 데이터 세트의 열과 일치하지 않는 경우, 이 오류가 표시됩니다.

해결 방법: 열 선택기의 열 범위를 데이터 세트의 열에 맞게 수정합니다.

예외 메시지
잘못되었거나 범위를 벗어난 열 인덱스 범위를 지정했습니다.
열 범위 " {0} "이 (가) 잘못 되었거나 범위를 벗어났습니다.

오류 0061

테이블과 열 수가 다른 DataTable에 행을 추가하려고 하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 주어진 데이터 세트와 열 수가 다른 어떤 데이터 세트에 행을 추가하려고 할 때 발생합니다. 데이터 세트에 추가되는 행에서 입력 데이터 세트의 열 수가 다른 경우에 이 오류가 표시됩니다. 열 수가 서로 다른 경우에는 행을 데이터 세트에 추가할 수 없습니다.

해결 방법: 추가된 행과 동일한 수의 열을 포함하도록 입력 데이터 세트를 수정하거나, 데이터 세트와 동일한 수의 열을 갖도록 추가된 행을 수정합니다.

예외 메시지
모든 테이블의 열 수는 같아야 합니다.

오류 0062

서로 다른 학습자 유형으로 두 모델을 비교하려고 하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 채점된 두 가지 상이한 데이터 세트에 대한 평가 메트릭을 비교할 수 없을 때 발생합니다. 이 경우, 두 개의 채점된 데이터 세트를 생성하는 데 사용되는 모델의 효과를 비교할 수 없습니다.

해결 방법: 채점된 결과가 동일한 종류의 기계 학습 모델(이진 분류, 회귀, 다중 클래스 분류, 권장 사항, 클러스터링, 변칙 검색 등)로 생성되는지 확인합니다. 비교하는 모든 모델의 학습자 유형은 같아야 합니다.

예외 메시지
모든 모델의 학습자 유형은 같아야 합니다.

오류 0063

이 예외는 R 스크립트 평가가 오류로 인해 실패 하는 경우에 발생 합니다.

이 오류는 Azure Machine Learning의 r 언어 모듈 중 하나에서 r 스크립트를 제공 했 고 r 코드에 내부 구문 오류가 있는 경우에 발생 합니다. R 스크립트에 잘못 된 입력을 제공 하는 경우에도 예외가 발생할 수 있습니다.

스크립트가 너무 커서 작업 영역에서 실행할 수 없는 경우에도 오류가 발생할 수 있습니다. R 스크립트 실행 모듈의 최대 스크립트 크기는 1000 줄 또는 32 KB의 작업 공간 중 더 작은 쪽입니다.

해결 방법:

  1. Azure Machine Learning Studio (클래식)에서 오류가 있는 모듈을 마우스 오른쪽 단추로 클릭 하 고 로그 보기 를 선택 합니다.
  2. 스택 추적을 포함 하는 모듈의 표준 오류 로그를 검사 합니다.
    • [ModuleOutput]로 시작 하는 줄은 R의 출력을 표시 합니다.
    • 경고 로 표시 된 R의 메시지는 일반적으로 실험 실패를 발생 시 키 지 않습니다.
  3. 스크립트 문제를 해결 합니다.
    • R 구문 오류를 확인 합니다. 정의 되었지만 채워지지 않는 변수를 확인 합니다.
    • 입력 데이터와 스크립트를 검토 하 여 스크립트의 데이터 또는 변수가 Azure Machine Learning에서 지원 하지 않는 문자를 사용 하는지 확인 합니다.
    • 모든 패키지 종속성이 설치 되어 있는지 확인 합니다.
    • 코드에서 기본적으로 로드 되지 않는 필수 라이브러리를 로드 하는지 여부를 확인 합니다.
    • 필요한 패키지가 올바른 버전 인지 확인 합니다.
    • 출력 하려는 모든 데이터 집합이 데이터 프레임으로 변환 되는지 확인 합니다.
  4. 실험을 다시 제출 합니다.

참고

이러한 항목에는 R 스크립트를 사용 하는 Cortana Intelligence Gallery 의 실험 링크 뿐만 아니라 사용할 수 있는 r 코드의 예가 포함 되어 있습니다.

예외 메시지
R 스크립트 평가 중에 오류가 발생했습니다.
R 스크립트를 평가 하는 동안 다음 오류가 발생 했습니다. r----------의 오류 메시지 시작---------- {0} r에서 오류 메시지의 끝----------------------
R 스크립트 ""을 (를) 평가 하는 동안 {1} 다음 오류가 발생 했습니다. r----------의 오류 메시지 시작---------- {0} r에서 오류 메시지의 끝----------------------

오류 0064

Azure Storage 계정 이름 또는 스토리지 키를 잘못 지정하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Azure Storage 계정 이름 또는 스토리지 키가 잘못 지정된 경우에 발생합니다. 스토리지 계정에서 잘못된 계정 이름 또는 암호를 입력하면 이 오류가 표시됩니다. 계정 이름이나 암호를 수동으로 입력하는 경우, 이 오류가 발생할 수 있습니다. 이 오류는 계정이 삭제된 경우에도 발생할 수 있습니다.

해결 방법: 계정 이름과 암호가 올바르게 입력되었으며 계정이 존재하는지 확인합니다.

예외 메시지
Azure Storage 계정 이름 또는 스토리지 키가 잘못되었습니다.
{0}계정 이름에 대 한 Azure 저장소 계정 이름 "" 또는 저장소 키가 잘못 되었습니다.

오류 0065

Azure Blob 이름을 잘못 지정한 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Azure Blob 이름이 잘못 지정된 경우에 발생합니다. 다음과 같은 경우에 오류가 표시됩니다.

  • 지정된 컨테이너에서 Blob을 찾을 수 없습니다.

  • 개수 모듈이 있는 학습 중 하나에서 출력 하도록 지정 된 blob의 정규화 된 이름이 512 자 보다 큽니다.

  • 형식이 인코딩된 Excel 또는 CSV인 경우 데이터 가져오기 요청에서 컨테이너만 소스로 지정되었습니다. 컨테이너 내 모든 Blob의 콘텐츠를 연결하는 것은 이러한 형식에서 허용되지 않습니다.

  • SAS URI에 올바른 Blob 이름이 포함되어 있지 않습니다.

해결 방법: 예외가 발생하는 모듈을 다시 방문합니다. 지정된 Blob이 스토리지 계정의 컨테이너에 존재하며 해당 사용 권한을 통해 Blob을 볼 수 있는지 확인합니다. 인코딩 형식의 Excel 또는 CSV가 있는 경우, 입력이 containername/filename 형식인지 확인합니다. SAS URI에 유효한 Blob 이름이 포함되어 있는지 확인합니다.

예외 메시지
Azure 저장소 Blob가 잘못되었습니다.
Azure storage blob 이름 " {0} "이 (가) 잘못 되었습니다.

오류 0066

리소스를 Azure Blob에 업로드할 수 없는 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 리소스를 Azure Blob에 업로드할 수 없는 경우에 발생합니다. 학습 Vowpal Wabbit 7-4 모델 에서 모델을 학습할 때 생성 된 해시 또는 모델을 저장 하는 동안 오류가 발생 하는 경우이 메시지가 표시 됩니다. 둘 다 입력 파일을 포함하는 계정과 동일한 Azure Storage 계정에 저장됩니다.

해결 방법: 모듈을 다시 방문합니다. Azure 계정 이름, 스토리지 키 및 컨테이너가 올바르며 컨테이너에 쓸 수 있는 권한이 해당 계정에 있는지 확인합니다.

예외 메시지
리소스를 Azure Storage에 업로드할 수 없습니다.
"" 파일 {0} 을 Azure storage에로 업로드할 수 없습니다 {1} .

오류 0067

데이터 세트의 열 수가 필요한 수와 다르면 예외가 발생합니다.

Azure Machine Learning에서 데이터 세트의 열 수가 필요한 수와 일치하지 않으면 이 오류가 발생합니다. 데이터 세트의 열 수가 실행 중인 모듈에서 필요한 열 수와 다를 때 이 오류가 발생합니다.

해결 방법: 입력 데이터 세트 또는 매개 변수를 수정합니다.

예외 메시지
데이터 테이블의 열 수가 필요한 수와 다릅니다.
"" 열이 필요한 데 대신 "" {0} {1} 열이 있습니다.

오류 0068

지정한 Hive 스크립트가 올바르지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Hive QL 스크립트에 구문 오류가 있거나 쿼리 또는 스크립트를 실행하는 동안 Hive 인터프리터에서 오류가 발생하는 경우에 발생합니다.

해결 방법:

특정 오류에 따라 작업을 수행할 수 있도록 Hive의 오류 메시지는 대체로 오류 로그에 다시 보고됩니다.

  • 모듈을 열고 쿼리를 검사하여 오류가 있는지 확인합니다.
  • Hadoop 클러스터의 Hive 콘솔에 로그인한 후 쿼리를 실행하여 쿼리가 Azure Machine Learning 외부에서 올바르게 작동하는지 확인합니다.
  • 실행문과 주석을 한 줄에 결합하는 대신 Hive 스크립트의 주석을 별도의 줄에 배치합니다.

리소스

기계 학습을 위한 Hive 쿼리와 관련된 도움말은 다음 문서를 참조하세요.

예외 메시지
Hive 스크립트가 잘못되었습니다.
Hive 스크립트가 잘못 {0} 되었습니다.

오류 0069

지정한 SQL 스크립트가 올바르지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 지정된 SQL 스크립트에 구문 문제가 있거나 스크립트에 지정된 열 또는 테이블이 유효하지 않은 경우에 발생합니다.

SQL 엔진에서 쿼리 또는 스크립트를 실행하는 동안 오류가 발생하면 이 오류가 표시됩니다. 특정 오류에 따라 작업을 수행할 수 있도록 SQL 오류 메시지는 대체로 오류 로그에 다시 보고됩니다.

해결 방법: 모듈을 다시 방문해 SQL 쿼리를 검사하여 오류가 있는지 확인합니다.

데이터베이스 서버에 직접 로그인하고 쿼리를 실행하여 쿼리가 Azure ML 외부에서 올바르게 작동하는지 확인합니다.

모듈 예외에 의해 보고된 SQL 생성 메시지가 있는 경우, 보고된 오류에 따라 작업을 수행합니다. 예를 들어 오류 메시지에는 발생 가능한 오류에 대한 특정 지침이 때때로 포함됩니다.

  • 해당 열 또는 누락된 데이터베이스가 없음: 열 이름을 잘못 입력했을 수도 있음을 나타냅니다. 열 이름이 올바른지 잘 모르겠다면 대괄호 또는 따옴표를 사용하여 열 식별자를 묶습니다.
  • 지정 된 키워드 앞에 구문 오류가 있음을 나타내는 SQL 논리 오류가 근처 <SQL keyword> 에 있습니다.
예외 메시지
SQL 스크립트가 잘못되었습니다.
SQL 쿼리 " {0} "이 (가) 올바르지 않습니다.
SQL 쿼리 " {0} "이 (가) 올바르지 않습니다. {1}

오류 0070

존재하지 않는 Azure 테이블에 액세스하려고 하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 없는 Azure 테이블에 액세스하려고 할 때 발생합니다. Azure Table Storage에서 읽기 또는 쓰기 작업을 할 때에는 존재하지 않는 테이블을 Azure Storage에 지정하는 경우, 이 오류가 표시됩니다. 이 오류는 원하는 테이블의 이름을 잘못 입력하거나 대상 이름과 저장소 유형이 일치하지 않는 경우에 발생할 수 있습니다. 예를 들어 테이블에서 읽기를 수행하려고 하지만 실제로는 Blob의 이름을 입력했습니다.

해결 방법: 모듈을 다시 방문하여 테이블 이름이 올바른지 확인합니다.

예외 메시지
Azure 테이블이 없습니다.
Azure 테이블 " {0} "이 (가) 없습니다.

오류 0071

제공한 자격 증명이 잘못된 경우 예외가 발생합니다.

이 오류 Azure Machine Learning는 제공 된 자격 증명이 잘못 된 경우 발생 합니다.

모듈이 HDInsight 클러스터에 연결할 수 없는 경우에도이 오류가 발생할 수 있습니다.

해결 방법: 모듈에 대 한 입력을 검토 하 고 계정 이름 및 암호를 확인 합니다.

오류를 일으킬 수 있는 다음 문제를 확인 합니다.

  • 데이터 집합의 스키마가 대상 datatable의 스키마와 일치 하지 않습니다.

  • 열 이름이 없거나 철자가 잘못 되었습니다.

  • 잘못 된 문자가 포함 된 열 이름을 가진 테이블에 쓰고 있습니다. 일반적으로 이러한 열 이름을 대괄호로 묶을 수 있지만 작동 하지 않는 경우에는 문자 및 밑줄 (_)만 사용 하도록 열 이름을 편집 합니다.

  • 쓰려는 문자열이 작은따옴표를 포함 합니다.

HDInsight 클러스터에 연결 하려는 경우 제공 된 자격 증명을 사용 하 여 대상 클러스터에 액세스할 수 있는지 확인 합니다.

예외 메시지
잘못된 자격 증명을 전달했습니다.
잘못 된 사용자 이름 " {0} " 또는 암호가 전달 되었습니다.

오류 0072

연결 시간이 초과되면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 연결 시간이 초과할 때 발생합니다. 데이터 원본 또는 대상에서 현재 연결 문제가 있는 경우(예: 인터넷 연결 속도가 느리거나 데이터 세트가 크거나 데이터에서 읽을 SQL 쿼리가 복잡한 처리를 수행하는 경우), 이 오류가 표시됩니다.

해결 방법: 현재 Azure Storage 또는 인터넷에 대한 연결 속도가 느린 문제가 있는지 확인합니다.

예외 메시지
연결 시간이 초과되었습니다.

오류 0073

열을 다른 형식으로 변환하는 동안 오류가 발생하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 열을 또 다른 형식으로 변환할 수 없는 경우에 발생합니다. 하나의 모듈에 특정 형식이 필요하며 열을 새 형식으로 변환할 수 없는 경우, 이 오류가 표시됩니다.

해결 방법: 내부 예외를 기준으로 열을 변환할 수 있도록 입력 데이터 세트를 수정합니다.

예외 메시지
열을 변환하지 못했습니다.
열을로 변환 하지 못했습니다 {0} .

오류 0074

편집 메타 데이터 에서 스파스 열을 범주 (으)로 변환 하려고 하면 예외가 발생 합니다.

이 오류 Azure Machine Learning는 편집 메타 데이터 에서 스파스 열을 범주에 변환 하려고 할 때 발생 합니다. 범주 만들기 옵션을 사용 하 여 스파스 열을 범주에 변환 하려고 하면이 오류가 표시 됩니다. Azure machine Learning은 스파스 범주 배열을 지원 하지 않으므로 모듈이 실패 합니다.

해결 방법: 먼저 데이터 집합으로 변환을 사용 하 여 열을 조밀 하 게 만들거나 열을 범주로 변환 하지 않습니다.

예외 메시지
스파스 열은 범주 열로 변환할 수 없습니다.

오류 0075

데이터 세트를 양자화할 때 잘못된 범주화 함수를 사용하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 지원되지 않는 메서드를 사용하여 데이터를 저장하려고 할 때 또는 매개 변수 조합이 잘못된 경우에 발생합니다.

해결 방법:

이 이벤트에 대한 오류 처리는 범주화 방법의 더 많은 사용자 지정이 허용된 이전 버전의 Azure Machine Learning에서 도입되었습니다. 현재 모든 범주화 방법은 드롭다운 목록에서 선택한 항목을 기반으로 하므로 기술적으로는 이 오류가 더 이상 발생하지 않아야 합니다.

Bin 모듈에 데이터 그룹화 를 사용할 때이 오류가 발생 하는 경우 데이터 형식, 매개 변수 설정 및 정확한 오류 메시지를 제공 하 여 Azure Machine Learning 포럼에서 문제를 보고 하는 것이 좋습니다.

예외 메시지
잘못된 범주화 함수를 사용했습니다.

오류 0077

알 수 없는 Blob 파일 쓰기 모드를 전달하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Blob 파일 대상 또는 원본의 사양에 잘못된 인수가 전달된 경우에 발생합니다.

해결 방법: Azure Blob Storage로 데이터를 가져오거나 이 스토리지에서 데이터를 내보내는 거의 모든 모듈에서 쓰기 모드를 제어하는 매개 변수 값은 드롭다운 목록을 사용하여 할당됩니다. 따라서 잘못된 값을 전달할 수 없으며 이 오류는 표시되지 않아야 합니다. 이 오류는 이후 릴리스에서 더 이상 사용되지 않습니다.

예외 메시지
지원 되지 않는 blob 쓰기 모드입니다.
지원 되지 않는 blob 쓰기 모드: {0} .

오류 0078

데이터 가져오기에 대한 HTTP 옵션이 리디렉션을 나타내는 3xx 상태 코드를 수신할 때 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 데이터 가져오기에 대한 HTTP 옵션이 리디렉션을 나타내는 3xx(301, 302, 304 등) 상태 코드를 수신할 때 발생합니다. 브라우저를 다른 페이지로 리디렉션하는 HTTP 원본에 연결하려고 하면 이 오류가 표시됩니다. 웹 사이트 리디렉션은 보안상의 이유로 Azure Machine Learning에 대한 데이터 원본으로 허용되지 않습니다.

해결 방법: 웹 사이트가 신뢰할 수 있는 웹 사이트인 경우, 리디렉션된 URL을 직접 입력합니다.

예외 메시지
Http 리디렉션이 허용되지 않습니다.

오류 0079

Azure Storage 컨테이너 이름을 잘못 지정한 경우 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 Azure Storage 컨테이너 이름이 잘못 지정된 경우에 발생합니다. Azure Blob Storage에 쓰기를 실행할 때 컨테이너로 시작하는 Blob 경로 옵션을 사용하여 컨테이너와 Blob(파일) 이름을 모두 지정하지 않으면 이 오류가 발생합니다.

해결 방법: 데이터 내보내기 모듈을 다시 방문하여 Blob에 대해 지정된 경로가 컨테이너/파일 이름 형식으로 된 컨테이너와 파일 이름을 모두 포함하는지 확인합니다.

예외 메시지
Azure Storage 컨테이너 이름이 잘못되었습니다.
Azure 저장소 컨테이너 이름 " {0} "이 (가) 잘못 되었습니다. 컨테이너/b a s 형식의 컨테이너 이름이 필요 합니다.

오류 0080

모든 값이 누락된 열이 모듈에서 허용되지 않으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 모듈에서 사용되는 하나 이상의 열에 누락된 값이 모두 포함되어 있을 때 발생합니다. 예를 들어, 모듈에서 각 열에 대한 집계 통계를 계산하는 경우, 데이터를 포함하지 않는 열에 대해서는 작업을 수행할 수 없습니다. 이러한 경우, 이 예외를 제외 하고 모듈 실행이 중단됩니다.

해결 방법: 입력 데이터 세트를 다시 방문하여 누락된 모든 값을 포함하는 열을 제거합니다.

예외 메시지
모든 값이 누락된 열은 허용되지 않습니다.
열 {0} 에 누락 된 모든 값이 있습니다.

오류 0081

줄이려는 차원 수가 스파스 기능 열을 하나 이상 포함하는 입력 데이터 세트의 기능 열 수와 같으면 PCA 모듈에서 예외가 발생합니다.

다음 조건이 충족되는 경우 Azure Machine Learning에서 이 오류가 발생합니다. (a) 입력 데이터 세트에 하나 이상의 스파스 열이 있고 (b) 요청된 차원의 최종 개수가 입력 차원의 수와 동일한 경우.

해결 방법: 출력의 차원 수를 입력의 차원 수보다 적게 줄이는 것이 좋습니다. 이는 PCA 애플리케이션에서 일반적입니다. 자세한 내용은 주 구성 요소 분석을 참조 하세요.

예외 메시지
스파스 기능 열을 포함 하는 데이터 집합의 경우 축소할 차원의 수는 기능 열 수보다 작아야 합니다.

오류 0082

모델을 정상적으로 역직렬화할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 저장된 기계 학습 모델 또는 변환을 호환성이 손상되는 변경의 결과로서 Azure Machine Learning 런타임의 최신 버전에서 로드할 수 없을 때 발생합니다.

해결 방법: 모델 또는 변환을 생성 한 학습 실험을 다시 실행 해야 하며 모델 또는 변환은 다시 저장 해야 합니다.

예외 메시지
모델을 역직렬화할 수 없습니다. 모델이 이전 버전 serialization 형식으로 직렬화되었을 수 있습니다. 모델을 다시 학습 하 고 다시 저장 합니다.

오류 0083

학습에 사용되는 데이터 세트를 구체적 학습자 유형에 사용할 수 없으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 데이터 세트가 학습 중인 학습자와 호환되지 않을 때 발생합니다. 예를 들어 데이터 세트에는 각 행에 누락된 값이 적어도 하나 이상 포함되어 있을 수 있으므로 학습 중에 전체 데이터 세트를 건너뛰면 됩니다. 경우에 따라서는 변칙 검색 등의 일부 기계 학습 알고리즘에서 레이블을 표시할 필요가 없으며, 데이터 세트에 레이블이 있는 경우에는 이 예외가 발생할 수 있습니다.

해결 방법: 입력 데이터 세트에 대한 요구 사항을 확인하는 데 사용되는 학습자의 설명서를 참조하세요. 열을 검사하여 필요한 모든 열이 있는지 확인합니다.

예외 메시지
학습에 사용되는 데이터 세트가 잘못되었습니다.
{0} 학습에 대 한 잘못 된 데이터를 포함 합니다.
{0} 학습에 대 한 잘못 된 데이터를 포함 합니다. 학습자 형식: {1} .

오류 0084

R 스크립트에서 생성된 점수를 평가할 때 예외가 발생합니다. 이는 현재 지원되지 않습니다.

Azure Machine Learning에서 이 오류는 점수를 포함하는 R 스크립트의 출력을 사용하여 모델을 평가하기 위해 모듈 중 하나를 사용하려고 할 때 발생합니다.

해결 방법:

예외 메시지
R에서 생성된 점수 평가는 현재 지원되지 않습니다.

오류 0085

오류와 함께 스크립트 평가가 실패하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 구문 오류를 포함하는 사용자 지정 스크립트를 실행할 때 발생합니다.

해결 방법: 외부 편집기에서 코드를 검토하고 오류가 있는지 확인합니다.

예외 메시지
스크립트 평가 중에 오류가 발생했습니다.
스크립트를 평가 하는 동안 다음 오류가 발생 했습니다. 자세한 내용은 출력 로그를 참조 하십시오. 인터프리터에서 오류 메시지를---------- {0} ---------- {1} ----------인터프리터의 오류 메시지의 끝 {0} ----------

오류 0086

계산 변환이 잘못된 경우 예외가 발생합니다.

이 오류는 개수 테이블을 기반으로 하는 변환을 선택할 때 선택한 변환이 현재 데이터와 호환 되지 않거나 새 개수 테이블을 사용 하는 경우 Azure Machine Learning에 발생 합니다.

해결 방법: 이 모듈은 두 가지 형식으로 변환을 구성 하는 개수와 규칙을 저장 하는 작업을 지원 합니다. 개수 테이블을 병합 하는 경우 병합 하려는 두 테이블 모두 동일한 형식을 사용 하는지 확인 합니다.

일반적으로 개수 기반 변환은 변환이 원래 생성 된 데이터 집합과 동일한 스키마를 가진 데이터 집합에만 적용할 수 있습니다.

일반 정보는 개수로 학습을 참조 하세요. 개수 기반 기능을 만들고 병합 하는 것과 관련 한 요구 사항은 다음 항목을 참조 하세요.

예외 메시지
잘못된 계산 변환을 지정했습니다.
입력 포트 ' '의 계산 변환이 {0} 잘못 되었습니다.
입력 포트 ' '의 계산 변환을 {0} 입력 포트 ' '의 계산 변환과 병합할 수 없습니다 {1} . 개수를 계산 하는 데 사용 되는 메타 데이터를 확인 하려면 선택 합니다.

오류 0087

개수 모듈에서 학습할 개수 테이블 형식을 잘못 지정하면 예외가 발생합니다.

이 오류는 기존 개수 테이블을 가져오려고 했지만 테이블이 현재 데이터와 호환 되지 않거나 새 개수 테이블을 사용 하는 경우 Azure Machine Learning에 발생 합니다.

해결 방법: 변환을 구성 하는 개수와 규칙을 저장 하는 데는 여러 가지 형식이 있습니다. 개수 테이블을 병합 하는 경우 둘 다 동일한 형식을 사용 하는지 확인 합니다.

일반적으로 개수 기반 변환은 변환이 원래 생성 된 데이터 집합과 동일한 스키마를 가진 데이터 집합에만 적용할 수 있습니다.

일반 정보는 개수로 학습을 참조 하세요. 개수 기반 기능을 만들고 병합 하는 것과 관련 한 요구 사항은 다음 항목을 참조 하세요.

오류 0088

개수 모듈에서 학습할 계산 형식을 잘못 지정하면 예외가 발생합니다.

이 오류 Azure Machine Learning는 count 기반 기능화 지원 되는 것과 다른 계산 방법을 사용 하려고 할 때 발생 합니다.

해결 방법: 일반적으로 계산 메서드는 드롭다운 목록에서 선택 되므로이 오류가 표시 되지 않습니다.

일반 정보는 개수로 학습을 참조 하세요. 개수 기반 기능을 만들고 병합 하는 것과 관련 한 요구 사항은 다음 항목을 참조 하세요.

예외 메시지
잘못된 계산 형식이 지정되었습니다.
지정 된 계산 형식 ' '은 (는) {0} 올바른 계산 형식이 아닙니다.

오류 0089

지정한 클래스 수가 개수 계산에 사용되는 데이터 집합의 실제 클래스 수보다 적으면 예외가 발생합니다.

이 Azure Machine Learning 오류는 개수 테이블을 만들 때 레이블 열에 모듈 매개 변수에서 지정한 것과 다른 수의 클래스가 포함 되어 있을 때 발생 합니다.

해결 방법: 데이터 집합을 확인 하 고 레이블 열에 있는 고유한 값 (가능한 클래스)의 수를 정확 하 게 확인 합니다. 개수 테이블을 만들 때 적어도이 수의 클래스를 지정 해야 합니다.

개수 테이블은 사용 가능한 클래스의 수를 자동으로 결정할 수 없습니다.

개수 테이블을 만들 때 0 또는 레이블 열의 실제 클래스 수보다 작은 숫자를 지정할 수 없습니다.

예외 메시지
클래스 수가 잘못되었습니다. 매개 변수 창에서 지정 하는 클래스의 수가 레이블 열의 클래스 수보다 크거나 같은지 확인 하십시오.
지정 된 클래스 수는 ' {0} '입니다 .이 값은 {1} 를 계산 하는 데 사용 되는 데이터 집합의 레이블 값 ' ' 보다 크지 않습니다. 매개 변수 창에서 지정 하는 클래스의 수가 레이블 열의 클래스 수보다 크거나 같은지 확인 하십시오.

오류 0090

Hive 테이블 만들기가 실패하면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 데이터 내보내기를 사용하거나 다른 옵션을 사용하여 HDInsight 클러스터에 데이터를 저장하고 지정된 Hive 테이블을 만들 수 없을 때 발생합니다.

해결 방법: 클러스터와 연결된 Azure Storage 계정 이름을 확인하고 모듈 속성에서 동일한 계정을 사용하고 있는지 확인합니다.

예외 메시지
Hive 테이블을 만들 수 없습니다. HDInsight 클러스터의 경우 클러스터와 연결 된 Azure storage 계정 이름이 module 매개 변수를 통해 전달 되는 것과 동일한 지 확인 합니다.
Hive 테이블 ""을 (를) {0} 만들 수 없습니다. HDInsight 클러스터의 경우 클러스터와 연결 된 Azure storage 계정 이름이 module 매개 변수를 통해 전달 되는 것과 동일한 지 확인 합니다.
Hive 테이블 ""을 (를) {0} 만들 수 없습니다. HDInsight 클러스터의 경우 클러스터와 연결 된 Azure storage 계정 이름이 "" 인지 확인 {1} 합니다.

오류 0100

사용자 지정 모듈에 대해 지원되지 않는 언어를 지정하면 예외가 발생합니다.

이 Azure Machine Learning 오류는 사용자 지정 모듈을 빌드할 때 사용자 지정 모듈 xml 정의 파일에 있는 Language 요소의 name 속성에 잘못 된 값이 있을 때 발생 합니다. 현재이 속성에 유효한 값은 뿐 R 입니다. 다음은 그 예입니다.

<Language name="R" sourceFile="CustomAddRows.R" entryPoint="CustomAddRows" />

해결 방법: 사용자 지정 모듈 xml 정의 파일에 있는 Language 요소의 name 속성이로 설정 되어 있는지 확인 R 합니다. 파일을 저장 하 고, 사용자 지정 모듈 zip 패키지를 업데이트 하 고, 사용자 지정 모듈을 다시 추가 해 봅니다.

예외 메시지
지원 되지 않는 사용자 지정 모듈 언어를 지정 했습니다.

오류 0101

모든 포트 및 매개 변수 Id는 고유 해야 합니다.

이 Azure Machine Learning 오류는 하나 이상의 포트 또는 매개 변수가 사용자 지정 모듈 XML 정의 파일에 동일한 ID 값을 할당 하는 경우 발생 합니다.

해결 방법: 모든 포트 및 매개 변수에 대 한 ID 값이 고유한 지 확인 합니다. Xml 파일을 저장 하 고, 사용자 지정 모듈 zip 패키지를 업데이트 하 고, 사용자 지정 모듈을 다시 추가 해 봅니다.

예외 메시지
모듈에 대 한 모든 포트 및 매개 변수 Id는 고유 해야 합니다.
' {0} ' 모듈에 중복 된 포트/인수 id가 있습니다. 모든 포트/인수 Id는 모듈에 대해 고유 해야 합니다.

오류 0102

ZIP 파일을 추출할 수 없을 때 발생합니다.

Azure Machine Learning에서 이 오류는 .zip 확장명을 사용하는 압축된 패키지를 가져올 경우 패키지가 zip 파일이 아니거나 해당 파일이 지원되는 zip 형식을 사용하지 않을 때 발생합니다.

해결 방법: 선택한 파일이 유효한 .zip 파일인지 확인하고 지원되는 압축 알고리즘 중 하나를 사용하여 압축되었는지 확인합니다.

데이터 세트를 압축된 형식으로 가져올 때 이 오류가 발생하는 경우, 포함된 모든 파일이 지원되는 파일 형식 중 하나를 사용하며 유니코드 형식으로 되어 있는지 확인합니다. 자세한 내용은 압축 풀기 데이터 집합을 참조 하세요.

원하는 파일을 새 압축 압축 폴더에 다시 추가 하 고 사용자 지정 모듈을 다시 추가 해 보십시오.

예외 메시지
지정한 ZIP 파일이 올바른 형식이 아닙니다.

오류 0103

ZIP 파일에.xml 파일이 없으면 throw됩니다.

이 Azure Machine Learning 오류는 사용자 지정 모듈 zip 패키지에 모듈 정의 파일 (.xml)이 포함 되어 있지 않을 때 발생 합니다. 이러한 파일은 zip 패키지의 루트에 있어야 합니다 (예: 하위 폴더에 포함 되지 않음).

해결 방법: 하나 이상의 xml 모듈 정의 파일이 디스크 드라이브의 임시 폴더로 추출 하 여 zip 패키지의 루트 폴더에 있는지 확인 하십시오. 모든 xml 파일은 zip 패키지를 추출한 폴더에 직접 있어야 합니다. Zip 패키지를 만들 때 zip으로 사용할 xml 파일이 포함 된 폴더를 선택 하지 않으면 zip 패키지 내에서 zip으로 선택한 폴더와 같은 이름의 하위 폴더가 생성 됩니다.

예외 메시지
지정한 ZIP 파일에 모듈 정의 파일(.xml 파일)이 포함되어 있지 않습니다.

오류 0104

모듈 정의 파일이 찾을 수 없는 스크립트를 참조하면 throw됩니다.

이 오류는 사용자 지정 모듈 xml 정의 파일이 zip 패키지에 없는 언어 요소의 스크립트 파일을 참조 하는 경우 Azure Machine Learning에 throw 됩니다. 스크립트 파일 경로는 Language 요소의 sourceFile 속성에서 정의 됩니다. 원본 파일의 경로는 zip 패키지의 루트 (모듈 xml 정의 파일과 동일한 위치)를 기준으로 합니다. 스크립트 파일이 하위 폴더에 있는 경우 스크립트 파일에 대 한 상대 경로를 지정 해야 합니다. 예를 들어 모든 스크립트가 zip 패키지 내의 Myscripts 폴더에 저장 된 경우 Language 요소는 아래와 같이이 경로를 sourceFile 속성에 추가 해야 합니다. 다음은 그 예입니다.

<Language name="R" sourceFile="myScripts/CustomAddRows.R" entryPoint="CustomAddRows" />

해결 방법: 사용자 지정 모듈 xml 정의의 Language 요소에 있는 sourceFile 속성 값이 올바르고 원본 파일이 zip 패키지의 올바른 상대 경로에 있는지 확인 하십시오.

예외 메시지
참조되는 R 스크립트 파일이 없습니다.
참조 된 R 스크립트 파일 ' {0} '을 (를) 찾을 수 없습니다. 정의 위치에서 파일의 상대 경로가 올바른지 확인하세요.

오류 0105

모듈 정의 파일에 지원되지 않는 매개 변수 형식이 포함된 경우, 이 오류가 표시됩니다.

Azure Machine Learning에서 이 오류는 사용자 지정 모듈 xml 정의를 만들 때 정의에서 매개 변수 또는 인수의 형식이 지원되는 형식과 일치하지 않는 경우에 발생합니다.

해결 방법: 사용자 지정 모듈 xml 정의 파일에서 Arg 요소의 형식 속성이 지원되는 형식에 속하는지 확인합니다.

예외 메시지
지원되지 않는 매개 변수 유형입니다.
지원되지 않는 '{0}' 매개 변수 유형을 지정했습니다.

오류 0106

모듈 정의 파일에서 지원 되지 않는 입력 형식을 정의 하는 경우 throw 됩니다.

Azure Machine Learning에서이 오류는 사용자 지정 모듈 XML 정의의 입력 포트 형식이 지원 되는 형식과 일치 하지 않는 경우에 생성 됩니다.

해결 방법: 사용자 지정 모듈 XML 정의 파일에 있는 Input 요소의 type 속성이 지원 되는 유형 인지 확인 합니다.

예외 메시지
지원되지 않는 입력 유형입니다.
지원 되지 않는 입력 형식 ' '이 (가) {0} 지정 되었습니다.

오류 0107

모듈 정의 파일에서 지원되지 않는 출력 형식을 정의하면 발생합니다.

Azure Machine Learning에서 이 오류는 사용자 지정 모듈 xml 정의에서 출력 포트의 형식이 지원되는 형식과 일치하지 않는 경우에 발생합니다.

해결 방법: 사용자 지정 모듈 xml 정의 파일에서 출력 요소의 형식 속성이 지원되는 형식에 속하는지 확인합니다.

예외 메시지
지원되지 않는 출력 형식입니다.
지원 되지 않는 출력 유형 ' '이 (가) {0} 지정 되었습니다.

오류 0108

모듈 정의 파일에서 지원되는 것보다 많은 입력 또는 출력 포트를 정의하면 throw됩니다.

이 오류 Azure Machine Learning는 사용자 지정 모듈 xml 정의에 너무 많은 입력 또는 출력 포트가 정의 되어 있는 경우에 생성 됩니다.

해결 방법: 사용자 지정 모듈 xml 정의에 정의 된 입력 및 출력 포트의 최대 수가 지원 되는 최대 포트 수를 초과 하지 않도록 합니다.

예외 메시지
지원되는 입력 또는 출력 포트의 수가 초과되었습니다.
지원 되는 ' ' 포트 수를 초과 했습니다 {0} . ' ' 포트의 허용 {0} 되는 최대 수는 ' '입니다 {1} .

오류 0109

모듈 정의 파일에서 열 선택을 잘못 정의하면 throw됩니다.

Azure Machine Learning에서이 오류는 열 선택기 인수에 대 한 구문에 사용자 지정 모듈 xml 정의의 오류가 포함 된 경우에 생성 됩니다.

해결 방법: 이 오류는 열 선택 인수의 구문에 사용자 지정 모듈 xml 정의에 오류가 포함 되어 있는 경우에 생성 됩니다.

예외 메시지
열 선택의 구문이 지원되지 않습니다.

오류 0110

모듈 정의 파일에서 존재 하지 않는 입력 포트 ID를 참조 하는 열 선택기를 정의 하는 경우 throw 됩니다.

이 오류는 ColumnPicker 형식의 PortId 속성 요소 내에 있는 속성이 입력 포트의 ID 값과 일치 하지 않는 경우 Azure Machine Learning에 생성 됩니다.

해결 방법: PortId 속성이 사용자 지정 모듈 xml 정의에 정의 된 입력 포트의 ID 값과 일치 하는지 확인 합니다.

예외 메시지
열 선택이 존재 하지 않는 입력 포트 ID를 참조 합니다.
열 선택이 존재 하지 않는 입력 포트 ID ' '을 (를) 참조 {0} 합니다.

오류 0111

모듈 정의 파일에서 잘못된 속성을 정의하면 throw됩니다.

이 오류는 잘못 된 속성이 사용자 지정 모듈 XML 정의의 요소에 할당 된 경우 Azure Machine Learning에 생성 됩니다.

해결 방법: 사용자 지정 모듈 요소에서 속성이 지원 되는지 확인 합니다.

예외 메시지
속성 정의가 잘못되었습니다.
속성 정의 ' {0} '이 (가) 잘못 되었습니다.

오류 0112

모듈 정의 파일을 구문 분석할 수 없으면 throw됩니다.

이 오류는 사용자 지정 모듈 XML 정의가 유효한 XML 파일로 구문 분석 되지 않도록 하는 오류가 xml 형식에 있는 경우 Azure Machine Learning에 생성 됩니다.

해결 방법: 각 요소가 올바르게 열리고 닫혀 있는지 확인 합니다. XML 서식 지정에 오류가 없는지 확인 합니다.

예외 메시지
모듈 정의 파일을 구문 분석할 수 없습니다.
모듈 정의 파일 ' '을 (를) 구문 분석할 수 없습니다 {0} .

오류 0113

모듈 정의 파일에 오류가 포함되어 있으면 throw됩니다.

Azure Machine Learning에서이 오류는 사용자 지정 모듈 XML 정의 파일을 구문 분석할 수 있지만 사용자 지정 모듈에서 지원 하지 않는 요소의 정의와 같은 오류가 포함 된 경우에 생성 됩니다.

해결 방법: 사용자 지정 모듈 정의 파일에서 사용자 지정 모듈에서 지 원하는 요소 및 속성을 정의 하는지 확인 합니다.

예외 메시지
모듈 정의 파일에 오류가 있습니다.
모듈 정의 파일 ' {0} '에 오류가 있습니다.
모듈 정의 파일 ' {0} '에 오류가 있습니다. {1}

오류 0114

사용자 지정 모듈을 작성하지 못하면 throw됩니다.

Azure Machine Learning에서이 오류는 사용자 지정 모듈 빌드에 실패 한 경우에 생성 됩니다. 사용자 지정 모듈을 추가 하는 동안 하나 이상의 사용자 지정 모듈 관련 오류가 발생 하는 경우이 오류가 발생 합니다. 이 오류 메시지 내에 추가 오류가 보고 됩니다.

해결 방법: 이 예외 메시지 내에서 보고 된 오류를 해결 합니다.

예외 메시지
사용자 지정 모듈을 작성하지 못했습니다.
오류가 발생 하 여 사용자 지정 모듈을 작성 하지 못했습니다. {0}

오류 0115

사용자 지정 모듈 기본 스크립트에 지원 되지 않는 확장이 있는 경우 throw 됩니다.

이 오류 Azure Machine Learning은 알 수 없는 파일 이름 확장명을 사용 하는 사용자 지정 모듈에 대 한 스크립트를 제공할 때 발생 합니다.

해결 방법: 사용자 지정 모듈에 포함 된 스크립트 파일의 파일 형식 및 파일 이름 확장명을 확인 합니다.

예외 메시지
지원 되지 않는 확장 기본 스크립트입니다.
기본 스크립트에 대해 지원 되지 않는 파일 확장 {0} 입니다.

오류 0121

테이블에 쓸 수 없기 때문에 SQL 쓰기가 실패할 때 throw 됩니다.

이 Azure Machine Learning 오류는 데이터 내보내기 모듈을 사용 하 여 결과를 SQL 데이터베이스의 테이블에 저장 하 고 테이블을 쓸 수 없는 경우에 생성 됩니다. 일반적으로 데이터 내보내기 모듈에서 SQL Server 인스턴스와의 연결을 성공적으로 설정 하 고 Azure ML 데이터 집합의 내용을 테이블에 쓸 수 없는 경우이 오류가 표시 됩니다.

해결 방법:

  • 데이터 내보내기 모듈의 속성 창을 열고 데이터베이스 및 테이블 이름을 올바르게 입력 했는지 확인 합니다.
  • 내보내는 데이터 집합의 스키마를 검토 하 고 데이터가 대상 테이블과 호환 되는지 확인 합니다.
  • 사용자 이름 및 암호와 연결 된 SQL 로그인에 테이블에 쓸 수 있는 권한이 있는지 확인 합니다.
  • 예외에 SQL Server의 추가 오류 정보가 포함 되어 있으면 해당 정보를 사용 하 여 수정 하십시오.
예외 메시지
서버에 연결되었으나 테이블에 쓸 수 없습니다.
Sql 테이블에 쓸 수 없습니다. {0}

오류 0122

가중치 열이 하나만 허용되는데 여러 개를 지정하면 오류가 발생합니다.

이 오류는 가중치 열로 선택한 열이 너무 많은 경우 Azure Machine Learning에 발생 합니다.

해결 방법: 입력 데이터 집합 및 메타 데이터를 검토 합니다. 하나의 열에만 가중치가 있는지 확인 합니다.

예외 메시지
여러 가중치 열을 지정했습니다.

오류 0123

레이블 열에 벡터 열을 지정하면 예외가 발생합니다.

이 오류 Azure Machine Learning는 벡터를 레이블 열로 사용 하는 경우 발생 합니다.

해결 방법: 필요한 경우 열의 데이터 형식을 변경 하거나 다른 열을 선택 합니다.

예외 메시지
벡터 열을 레이블 열로 지정했습니다.

오류 0124

숫자가 아닌 열을 가중치 열로 지정 하면 예외가 발생 합니다.

해결 방법:

예외 메시지
숫자가 아닌 열을 가중치 열로 지정했습니다.

오류 0125

여러 데이터 세트의 스키마가 일치하지 않으면 발생합니다.

해결 방법:

예외 메시지
데이터 세트 스키마가 일치하지 않습니다.

오류 0126

사용자가 Azure ML에서 지원되지 않는 SQL 도메인을 지정하면 예외가 발생합니다.

이 오류는 사용자가 Azure Machine Learning에서 지원 되지 않는 SQL 도메인을 지정할 때 생성 됩니다. 허용 목록에 없는 도메인의 데이터베이스 서버에 연결 하려고 하면이 오류가 표시 됩니다. 현재 허용 되는 SQL 도메인은 "database.windows.net", "cloudapp.net" 또는 ". database.secure.windows.net"입니다. 즉, 서버는 azure SQL server 또는 Azure의 가상 컴퓨터에 있는 서버 여야 합니다.

해결 방법: 모듈을 다시 방문합니다. SQL database 서버가 허용 된 도메인 중 하나에 속하는지 확인 합니다.

  • .database.windows.net

  • .cloudapp.net

  • . database.secure.windows.net

예외 메시지
지원되지 않는 SQL 도메인입니다.
SQL 도메인은 {0} 현재 AZURE ML에서 지원 되지 않습니다.

오류 0127

이미지 픽셀 크기가 허용되는 제한을 초과합니다.

이 오류는 분류를 위해 이미지 데이터 세트에서 이미지를 읽고 이 이미지가 모델에서 처리할 수 있는 것보다 큰 경우에 발생합니다.

해결 방법: 이미지 크기 및 기타 요구 사항에 대 한 자세한 내용은 다음 항목을 참조 하세요.

예외 메시지
이미지 픽셀 크기가 허용되는 제한을 초과합니다.
' ' 파일의 이미지 픽셀 크기가 {0} 허용 된 제한 ' '을 (를) 초과 합니다. {1}

오류 0128

범주 열에 대한 조건부 확률 수가 제한을 초과합니다.

해결 방법:

예외 메시지
범주 열에 대한 조건부 확률 수가 제한을 초과합니다.
범주 열에 대한 조건부 확률 수가 제한을 초과합니다. 열 ' {0} ' 및 ' {1} '이 (가) 문제가 있는 쌍입니다.

오류 0129

데이터 세트의 열 수가 허용되는 제한을 초과합니다.

해결 방법:

예외 메시지
데이터 세트의 열 수가 허용되는 제한을 초과합니다.
' '의 데이터 집합에 있는 열 수가 {0} 허용 된 수보다 많습니다. '
' '의 데이터 집합에 있는 열 수가 {0} 허용 되는 ' ' 제한을 초과 했습니다 {1} .
' '의 데이터 집합에 있는 열 수가 허용 되는 ' ' {0} {1} 제한인 ' ' 제한을 초과 했습니다 {2} .

오류 0130

학습 데이터 집합의 모든 행에 누락 값이 포함 되어 있으면 예외가 발생 합니다.

이는 학습 데이터 집합의 일부 열이 비어 있을 때 발생 합니다.

해결 방법: 누락 된 데이터 정리 모듈을 사용 하 여 모든 누락 값이 있는 열을 제거 합니다.

예외 메시지
학습 데이터 집합의 모든 행에 누락 값이 포함 되어 있습니다. 누락 된 데이터 정리 모듈을 사용 하 여 누락 값을 제거 하는 것이 좋습니다.

오류 0131

Zip 파일의 데이터 집합 중 하나 이상이 압축 해제 되 고 올바르게 등록 되지 않은 경우 예외가 발생 합니다.

이 오류는 zip 파일에 있는 하나 이상의 데이터 집합에 대 한 압축을 풀 수 없고 올바르게 읽을 수 없는 경우에 생성 됩니다. Zip 파일 자체 나 파일 중 하나가 손상 되었거나 파일의 압축을 풀고 확장 하는 동안 시스템 오류가 발생 하 여 압축 풀기에 실패 하는 경우이 오류가 표시 됩니다.

해결 방법: 오류 메시지에 제공 된 세부 정보를 사용 하 여 진행 방법을 결정 합니다.

예외 메시지
압축 데이터 집합 업로드 실패
압축 된 데이터 집합이 {0} 다음 메시지와 함께 실패 했습니다. {1}
압축 된 데이터 집합이 {0} {1} 다음 메시지와 함께 실패 했습니다. {2}

오류 0132

압축을 푸는 데 파일 이름이 지정 되지 않았습니다. zip 파일에서 파일을 여러 개 찾았습니다.

이 오류는 압축을 푸는 파일 이름이 지정 되지 않은 경우에 생성 됩니다. zip 파일에서 파일을 여러 개 찾았습니다. .Zip 파일에 압축 된 파일이 두 개 이상 포함 되어 있지만 압축 을 풀 데이터 집합 에서 추출할 파일을 지정 하지 않은 경우 모듈의 속성 창에이 오류가 표시 됩니다. 현재는 모듈이 실행 될 때마다 하나의 파일만 추출할 수 있습니다.

해결 방법: 오류 메시지는 .zip 파일에 있는 파일의 목록을 제공 합니다. 원하는 파일의 이름을 복사 하 여 압축을 풀 데이터 집합 텍스트 상자에 붙여넣습니다.

예외 메시지
Zip 파일에 여러 파일이 포함 되어 있습니다. 확장할 파일을 지정 해야 합니다.
파일에 둘 이상의 파일이 포함 되어 있습니다. 확장할 파일을 지정 합니다. 다음 파일이 있습니다. {0}

오류 0133

Zip 파일에서 지정 된 파일을 찾을 수 없습니다.

이 오류는 속성 창의 압축을 풀 데이터 집합 필드에 입력 한 파일 이름이 .zip 파일에 있는 파일의 이름과 일치 하지 않는 경우에 생성 됩니다. 이 오류의 가장 일반적인 원인은 입력 오류가 발생 하거나 파일을 확장 하기 위해 잘못 된 보관 파일을 검색 하는 것입니다.

해결 방법: 모듈을 다시 방문합니다. 압축을 풀 파일의 이름이 검색 된 파일 목록에 표시 되는 경우 파일 이름을 복사 하 여 압축을 해제할 데이터 집합 속성 상자에 붙여넣습니다. 목록에 원하는 파일 이름이 표시 되지 않는 경우 올바른 .zip 파일 및 원하는 파일의 올바른 이름을 갖고 있는지 확인 합니다.

예외 메시지
지정 된 파일을 찾을 수 없습니다. zip 파일입니다.
지정한 파일을 찾을 수 없습니다. 다음 파일을 찾았습니다. {0}

오류 0134

레이블 열이 없거나 레이블이 지정된 행 수가 부족할 때 예외가 발생합니다.

이 오류는 모듈에 레이블 열이 필요하지만 열 선택 영역에서 하나의 열을 포함하지 않았거나 레이블 열에서 누락된 값이 너무 많은 경우에 발생합니다.

이 오류는 다운스트림 작업에 사용할 수 있는 행이 부족할 정도로 이전 작업에서 데이터 세트를 변경할 때 발생할 수도 있습니다. 예를 들어 파티션 및 샘플 모듈에서 하나의 식을 사용하여 데이터 세트를 값으로 나누는 경우를 가정합니다. 이 식에 일치하는 항목이 없다면 파티션에서 생성된 데이터 세트 중 하나가 비게 됩니다.

해결 방법:

열 선택 영역에 레이블 열을 포함 하지만 인식 되지 않는 경우 메타 데이터 편집 모듈을 사용 하 여 레이블 열로 표시 합니다.

데이터 요약 모듈을 사용 하 여 각 열에 누락 된 값의 수를 표시 하는 보고서를 생성할 수 있습니다. 그런 다음, 누락된 데이터 정리 모듈을 사용하여 레이블 열에 누락된 값이 있는 행을 제거할 수 있습니다.

입력 데이터 세트에 올바른 데이터가 포함되어 있는지 확인하고 작업 요구 사항을 충족하기에 충분한 수의 행이 있는지 확인합니다. 알고리즘에서 최소 수의 데이터 행이 필요하며 다만 데이터에 몇 개의 행만 포함되어 있거나 헤더만 포함되어 있는 경우, 상당수 알고리즘에서 오류 메시지가 생성됩니다.

예외 메시지
레이블 열이 없거나 레이블이 지정된 행 수가 부족할 때 예외가 발생합니다.
레이블 열이 없거나 레이블이 지정 된 행 보다 작은 경우 예외가 발생 합니다. {0}

오류 0135

중심 기반 클러스터만 지원 됩니다.

해결 방법: 중심를 사용 하 여 클러스터를 초기화 하지 않는 사용자 지정 클러스터링 알고리즘을 기반으로 하는 클러스터링 모델을 평가 하려고 하면이 오류 메시지가 나타날 수 있습니다.

모델 평가 를 사용 하 여 K를 의미 하는 클러스터링 모듈을 기반으로 하는 클러스터링 모델을 평가할 수 있습니다. 사용자 지정 알고리즘의 경우 R 스크립트 실행 모듈을 사용 하 여 사용자 지정 평가 스크립트를 만듭니다.

예외 메시지
중심 기반 클러스터만 지원 됩니다.

오류 0136

파일 이름이 반환 되지 않았습니다. 따라서 파일을 처리할 수 없습니다.

해결 방법:

예외 메시지
파일 이름이 반환 되지 않았습니다. 따라서 파일을 처리할 수 없습니다.

오류 0137

Azure Storage SDK에서 읽기 또는 쓰기 중에 테이블 속성과 데이터 집합 열 사이를 변환 하는 동안 오류가 발생 했습니다.

해결 방법:

예외 메시지
Azure 테이블 저장소 속성과 데이터 집합 열 간의 변환 오류가 발생 했습니다.
Azure 테이블 저장소 속성과 데이터 집합 열 간의 변환 오류가 발생 했습니다. 추가 정보: {0}

오류 0138

메모리가 부족하여 모듈 실행을 완료할 수 없습니다. 데이터 세트를 저해상도 처리하면 문제를 완화하는 데 도움이 될 수 있습니다.

이 오류는 Azure 컨테이너에서 사용할 수 있는 것보다 더 많은 메모리가 실행 중인 모듈에 필요할 때 발생합니다. 이는 대량 데이터 세트를 사용하여 작업을 진행 중일 때 그리고 현재 작업이 메모리에 적합지 않은 경우에 발생할 수 있습니다.

해결 방법: 대량 데이터 세트를 읽으려고 할 때 작업을 완료할 수 없는 경우, 데이터 세트를 저해상도 처리하면 도움이 될 수 있습니다.

데이터 집합에 대 한 시각화를 사용 하 여 열의 카디널리티를 확인 하는 경우 일부 행만 샘플링 됩니다. 전체 보고서를 가져오려면 데이터 요약을 사용 합니다. SQL 적용 변환 을 사용 하 여 각 열에서 고유한 값의 수를 확인할 수도 있습니다.

경우에 따라 일시적인 로드로 인해이 오류가 발생할 수 있습니다. 컴퓨터 지원은 시간이 지남에 따라 변경 됩니다. 지원 되는 데이터 크기에 대 한 설명은 AZURE MACHINE LEARNING FAQ 를 참조 하십시오.

주 구성 요소 분석 또는 제공 된 기능 선택 방법 중 하나를 사용 하 여 데이터 집합을 더 작은 기능을 갖춘 열 집합으로 축소 합니다. 기능 선택

예외 메시지
메모리가 부족하여 모듈 실행을 완료할 수 없습니다.

오류 0139

열을 다른 형식으로 변환할 수 없으면 예외가 발생 합니다.

이 오류는 열을 다른 데이터 형식으로 변환 하려고 할 때 해당 형식이 현재 작업이 나 모듈에서 지원 되지 않는 경우 Azure Machine Learning에 발생 합니다.

모듈에서 현재 모듈의 요구 사항에 맞게 데이터를 암시적으로 변환 하려고 시도 하지만 변환이 불가능 한 경우에도이 오류가 나타날 수 있습니다.

해결 방법:

  1. 입력 데이터를 검토 하 고 사용 하려는 열의 정확한 데이터 형식 및 오류를 생성 하는 열의 데이터 형식을 결정 합니다. 경우에 따라 데이터 형식이 올바르지만 업스트림 작업에서 열의 데이터 형식이 나 사용 현황을 수정 했다고 판단할 수 있습니다. 메타 데이터 편집 모듈을 사용 하 여 열 메타 데이터를 원래 상태로 다시 설정 합니다.

  2. 모듈 도움말 페이지를 확인 하 여 지정 된 작업에 대 한 요구 사항을 확인 합니다. 현재 모듈에서 지원 되는 데이터 형식 및 지원 되는 값 범위를 확인 합니다.

  3. 값을 자르거나, 반올림 하거나, 이상 값을 제거 해야 하는 경우 수학 연산 적용 또는 클립 값 모듈을 사용 하 여 수정 합니다.

  4. 열을 다른 데이터 형식으로 변환 하거나 캐스팅할 수 있는지 여부를 고려 합니다. 다음 모듈은 데이터 수정에 대해 상당한 유연성과 성능을 제공 합니다.

참고

그래도 작동 하지 않나요? 문제에 대 한 추가 피드백을 제공 하 여 향상 된 문제 해결 지침을 개발 해 보세요. 이 페이지에 대 한 사용자 의견을 제출 하 고 오류를 생성 한 모듈의 이름과 실패 한 데이터 형식 변환을 제공 합니다.

예외 메시지
허용되지 않는 변환입니다.
를 변환할 수 없습니다. {0}
{0}행에서를 변환할 수 {1} 없습니다.
유형의 열 {0} 을 row 유형의 열로 변환할 수 없습니다 {1} {2} .
유형의 열 " {2} "을 (를) {0} row 유형의 열로 변환할 수 없습니다 {1} {3} .
유형의 열 " {2} "을 (를) {0} 행 형식의 열 "" (으)로 변환할 수 없습니다 {3} {1} {4} .

오류 0140

전달 된 열 집합 인수가 레이블 열을 제외한 다른 열을 포함 하지 않는 경우 예외가 발생 합니다.

이 오류는 기능을 포함 하 여 여러 열을 필요로 하는 모듈에 데이터 집합을 연결 했지만 레이블 열만 제공 하는 경우에 발생 합니다.

해결 방법: 데이터 집합에 포함할 기능 열을 하나 이상 선택 하십시오.

예외 메시지
지정한 열 집합은 레이블 열을 제외한 다른 열을 포함 하지 않습니다.

오류 0141

범주 및 문자열 열에서 선택한 숫자 열 및 고유 값의 수가 너무 적으면 예외가 발생합니다.

Azure Machine Learning에서 이 오류는 선택한 열에서 작업을 수행할 수 있는 고유 값이 부족한 경우에 발생합니다.

해결 방법: 일부 작업은 기능 및 범주 열에 대한 통계 연산을 수행하며, 값이 충분하지 않으면 작업이 실패하거나 잘못된 결과를 반환할 수 있습니다. 데이터 집합을 확인 하 여 fature 및 label 열에 있는 값의 수를 확인 하 고 수행 하려는 작업이 통계적으로 유효한 지 여부를 확인 합니다.

원본 데이터 세트가 올바르면 일부 업스트림 데이터 조작 또는 메타데이터 작업에서 데이터를 변경하고 일부 값을 제거했는지 여부도 확인할 수 있습니다.

업스트림 작업에 분할, 샘플링 또는 리샘플링이 포함된 경우, 필요한 수의 행과 값이 출력에 포함되어 있는지 확인합니다.

예외 메시지
범주 및 문자열 열에서 선택한 숫자 열 및 고유 값의 수가 너무 적습니다.
범주 및 문자열 열에서 선택 된 숫자 열과 고유 값의 총 개수 (현재)는 {0} 적어도 {1}

오류 0142

시스템이 인증을 위해 인증서를 로드할 수 없는 경우 예외가 발생 합니다.

해결 방법:

예외 메시지
인증서를 로드할 수 없습니다.
인증서를 {0} 로드할 수 없습니다. 해당 지 문은 {1} 입니다.

오류 0143

GitHub에서 제공 되는 사용자 제공 URL은 구문 분석할 수 없습니다.

이 Azure Machine Learning 오류는 잘못 된 URL을 지정 하 고 모듈에 유효한 GitHub URL이 필요한 경우 발생 합니다.

해결 방법: URL이 유효한 GitHub 리포지토리를 참조 하는지 확인 합니다. 다른 사이트 유형은 지원 되지 않습니다.

예외 메시지
URL이 github.com에서 시작 되지 않았습니다.
Github.com에서 URL이 아닙니다. {0}

오류 0144

사용자가 제공한 GitHub url에 필요한 파트가 없습니다.

이 오류 Azure Machine Learning 잘못 된 URL 형식을 사용 하 여 GitHub 파일 원본을 지정할 때 발생 합니다.

해결 방법: GitHub 리포지토리의 URL이 유효 하 고 \blob\ 또는 \stom\ 트리로 종료 되는지 확인 합니다 \ .

예외 메시지
GitHub URL을 구문 분석할 수 없습니다.
GitHub URL을 구문 분석할 수 없습니다 \ \ . 리포지토리 이름 뒤에는 ' \blob ' 또는 ' \blob '가와 야 합니다. {0}

오류 0145

어떤 이유로 인해 복제 디렉터리를 만들 수 없습니다.

이 오류 Azure Machine Learning 모듈에서 지정 된 디렉터리를 만들지 못할 때 발생 합니다.

해결 방법:

예외 메시지
복제 디렉터리를 만들 수 없습니다.

오류 0146

사용자 파일이 로컬 디렉터리에 압축을 푼 경우 결합 된 경로는 너무 길 수 있습니다.

이 오류는 파일 Azure Machine Learning의 압축을 풀 때 발생 하지만 압축을 풀 때 일부 파일 이름이 너무 긴 경우에 발생 합니다.

해결 방법: 결합 된 경로와 파일 이름이 248 자 보다 길지 않게 파일 이름을 편집 합니다.

예외 메시지
복제 경로가 248 자를 초과 하 여 스크립트 이름 또는 경로를 줄이십시오.

오류 0147

어떤 이유로 GitHub에서 콘텐츠를 다운로드할 수 없습니다.

이 오류 Azure Machine Learning는 GitHub에서 지정 된 파일을 읽거나 다운로드할 수 없을 때 발생 합니다.

해결 방법: 문제가 일시적인 것일 수 있습니다. 다른 시간에 파일에 액세스를 시도할 수 있습니다. 또는 필요한 권한이 있고 원본이 올바른지 확인 합니다.

예외 메시지
GitHub 액세스 오류입니다.
GitHub 액세스 오류입니다. {0}

오류 0148

데이터를 추출 하거나 디렉터리를 만드는 동안 무단 액세스 문제가 발생 했습니다.

이 오류는 디렉터리를 만들거나 저장소에서 데이터를 읽을 때 발생 하지만 필요한 권한이 없는 경우 Azure Machine Learning에 발생 합니다.

해결 방법:

예외 메시지
데이터를 추출 하는 동안 무단 액세스 예외가 발생 했습니다.

오류 0149

사용자 파일이 GitHub 번들 내에 없습니다.

이 오류 Azure Machine Learning는 지정 된 파일을 찾을 수 없을 때 발생 합니다.

해결 방법:

예외 메시지
GitHub 파일을 찾을 수 없습니다.
GitHub 파일을 찾을 수 없습니다. {0}

오류 0150

사용자 패키지에서 제공 되는 스크립트의 압축을 풀 수 없습니다. GitHub 파일과의 충돌로 인해 발생 하는 경우가 많습니다.

이 Azure Machine Learning 오류는 일반적으로 같은 이름의 기존 파일이 있을 때 스크립트를 추출할 수 없을 때 발생 합니다.

해결 방법:

예외 메시지
번들의 압축을 풀 수 없습니다. GitHub 파일과 같은 이름 충돌이 발생할 수 있습니다.

오류 0151

클라우드 저장소에 쓰는 동안 오류가 발생 했습니다. URL 확인.

이 오류는 모듈이 클라우드 저장소에 데이터를 쓰려고 하지만 URL을 사용할 수 없거나 유효 하지 않은 경우 Azure Machine Learning에 발생 합니다.

해결 방법: URL을 확인 하 고 쓰기 가능한 지 확인 합니다.

예외 메시지
클라우드 저장소에 쓰는 동안 오류가 발생 했습니다 (잘못 된 url 일 수 있음).
클라우드 저장소에 쓰는 동안 오류가 발생 {0} 했습니다. Url을 확인 합니다.

오류 0152

모듈 컨텍스트에서 Azure 클라우드 형식이 잘못 지정 되었습니다.

예외 메시지
잘못 된 Azure 클라우드 유형
잘못 된 Azure 클라우드 유형: {0}

오류 0153

지정한 저장소 끝점이 잘못 되었습니다.

예외 메시지
잘못 된 Azure 클라우드 유형
잘못 된 저장소 끝점: {0}

오류 0154

지정 된 서버 이름을 확인할 수 없습니다.

예외 메시지
지정 된 서버 이름을 확인할 수 없습니다.
지정 된 {0} documents.azure.com를 확인할 수 없습니다.

오류 0155

DocDb 클라이언트에서 예외를 throw 했습니다.

예외 메시지
DocDb 클라이언트에서 예외를 throw 했습니다.
DocDb 클라이언트: {0}

오류 0156

HCatalog 서버에 대 한 응답이 잘못 되었습니다.

예외 메시지
HCatalog 서버에 대 한 응답이 잘못 되었습니다. 모든 서비스가 실행 중인지 확인 합니다.
HCatalog 서버에 대 한 응답이 잘못 되었습니다. 모든 서비스가 실행 중인지 확인 합니다. 오류 세부 정보: {0}

오류 0157

일관성이 없거나 다른 문서 스키마로 인해 Azure Cosmos DB에서 읽는 동안 오류가 발생 했습니다. 판독기를 사용 하려면 모든 문서에 동일한 스키마가 있어야 합니다.

예외 메시지
다른 스키마가 있는 문서를 검색 했습니다. 모든 문서에 동일한 스키마가 있는지 확인

오류 1000

내부 라이브러리 예외입니다.

이 오류는 달리 처리되지 않은 내부 엔진 오류를 캡처하기 위해 제공됩니다. 따라서 오류를 생성한 모듈에 따라 이 오류의 원인이 달라질 수 있습니다.

자세한 도움말을 보려면 해당 오류와 함께 표시되는 세부 메시지를 시나리오에 대한 설명(입력으로 사용되는 데이터를 포함)과 함께 Azure Machine Learning 포럼에 게시하는 것이 좋습니다. 이 피드백은 오류의 우선 순위를 지정하고 추가 작업을 위해 가장 중요한 문제를 식별하는 데 도움이 됩니다.

예외 메시지
라이브러리 예외입니다.
라이브러리 예외: {0}
{0} 라이브러리 예외: {1}

자세한 도움말

모듈 오류 코드

Azure Machine Learning에 대 한 추가 도움말 또는 문제 해결 팁이 필요 한가요? 다음 리소스를 사용해 보세요.