Score Vowpal Wabbit versão 7-10 modelo

Classificar dados usando o sistema de aprendizado de máquina Vowpal Wabbit a partir da interface da linha de comandos

Categoria: análise de texto

Observação

Aplica-se a: Machine Learning Studio (clássico)

Esse conteúdo pertence apenas ao estúdio (clássico). Módulos de arrastar e soltar semelhantes foram adicionados ao designer de Azure Machine Learning. Saiba mais neste artigo comparando as duas versões.

Visão geral do módulo

Este artigo descreve como usar o módulo de modelo Score Vowpal Wabbit versão 7-10 no Azure Machine Learning Studio (clássico), para gerar pontuações para um conjunto de dados de entrada, usando um modelo Vowpal Wabbit existente.

Este módulo usa a versão 7-10 da estrutura Vowpal Wabbit. Use este módulo para pontuar dados usando um modelo treinado que foi salvo no formato 7-10.

Se você tiver modelos existentes criados usando uma versão anterior, use estes módulos:

Para obter a versão mais recente do Vowpal Wabbit, use:

Como configurar o modelo de Pontuação Vowpal Wabbit versão 7-10

  1. Adicione o módulo modelo de Pontuação Vowpal Wabbit versão 7-10 ao experimento.

  2. Adicione um modelo Vowpal Wabbit treinado e conecte-o à porta de entrada à esquerda. Você pode usar um modelo treinado criado no mesmo experimento ou localizar um modelo salvo no grupo de modelos treinados do painel de navegação esquerdo do Studio (clássico).

    Restrições

    O modelo deve estar disponível no Azure Machine Learning Studio (clássico); Você não pode carregar diretamente um modelo do armazenamento do Azure.

    Há suporte apenas para modelos Vowpal Wabbit 7-10; Você não pode conectar modelos salvos que foram treinados usando outros algoritmos e não pode usar modelos que foram treinados usando versões anteriores ou posteriores.

  3. Na caixa de texto argumentos de VW , digite um conjunto de argumentos de linha de comando válidos para o executável Vowpal Wabbit.
    Para obter informações sobre quais argumentos Vowpal Wabbit são suportados e não têm suporte no Azure Machine Learning, consulte a seção notas técnicas .

  4. Clique em especificar tipo de dados e selecione um dos tipos de dados com suporte na lista.

    A pontuação requer uma única coluna de dados compatíveis com VW.

    Se você tiver um arquivo existente que foi criado nos formatos SVMLight ou VW, você poderá carregá-lo no espaço de trabalho do Azure ML como um novo conjunto de um destes formatos: CSV genérico sem header, TSV sem cabeçalho.

    A opção VW requer que um rótulo esteja presente, mas não é usado na pontuação, exceto por comparação.

  5. Adicione o módulo importar dados e conecte-o à porta de entrada à direita de Pontuação Vowpal Wabbit versão 7-10. Configure os dados de importação para acessar os dados de entrada.

    Os dados de entrada para Pontuação devem ter sido preparados antecipadamente em um dos formatos com suporte e armazenados no armazenamento de BLOBs do Azure.

  6. Selecione a opção, inclua uma coluna extra contendo rótulos, se você quiser produzir rótulos junto com as pontuações.

    Normalmente, ao manipular dados de texto, Vowpal Wabbit não exige rótulos e retorna apenas as pontuações para cada linha de dados.

  7. Selecione a opção usar resultados em cache, se você quiser reutilizar os resultados de uma execução anterior, supondo que as seguintes condições sejam atendidas:

    • Existe um cache válido de uma execução anterior.

    • As configurações de dados de entrada e parâmetros do módulo não foram alteradas desde a execução anterior.

    Caso contrário, o processo de importação será repetido cada vez que o experimento for executado.

  8. Execute o experimento.

Resultados

Após a conclusão do treinamento:

A saída indica uma pontuação de previsão normalizada de 0 a 1.

Exemplos

Para obter exemplos de como o Vowpal Wabbit pode ser usado no aprendizado de máquina, consulte o Galeria de ia do Azure:

  • Exemplo de Wabbit de Vowpal

    Este experimento demonstra a preparação de dados, o treinamento e a operacionalização de um modelo VW.

O vídeo a seguir fornece uma explicação do processo de treinamento e pontuação para Vowpal Wabbit:

https://azure.microsoft.com/documentation/videos/text-analytics-and-vowpal-wabbit-in-azure-ml-studio/

Notas técnicas

Esta seção contém detalhes de implementação, dicas e respostas para perguntas frequentes.

Parâmetros

Vowpal Wabbit tem muitas opções de linha de comando para escolher e ajustar algoritmos. Uma discussão completa sobre essas opções não é possível aqui; Recomendamos que você exiba a página wiki do Vowpal Wabbit.

Os parâmetros a seguir não têm suporte no Azure Machine Learning Studio (clássico).

  • As opções de entrada/saída especificadas em https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments

    Essas propriedades já estão configuradas automaticamente pelo módulo.

  • Além disso, qualquer opção que gera várias saídas ou usa várias entradas não é permitida. Isso inclui --cbt , --lda e --wap .

  • Há suporte apenas para algoritmos de aprendizado supervisionados. Isso não permite essas opções: –active , --rank , --search etc.

Todos os argumentos que não sejam os descritos acima são permitidos.

Entradas esperadas

Nome Tipo Descrição
Modelo treinado Interface ILearner Aprendiz treinado
Conjunto de dados Tabela de Dados Conjunto de dados a ser classificado

Parâmetros do módulo

Name Intervalo Type Padrão Descrição
Argumentos VW Qualquer String nenhum Argumentos do tipo Vowpal Wabbit.

Os seguintes argumentos não têm suporte:

- -i
- -p ou
- -t
Inclua uma coluna extra que contenha rótulos Verdadeiro/Falso Boolean false Especifique se o arquivo compactado deve incluir rótulos com as previsões
Especifique o tipo de dados VW

SVMLight
Tipo de dados VW Indica se o formato de arquivo é SVMLight ou Vowpal Wabbit

Saídas

Nome Tipo Descrição
Conjunto de dados de resultados Tabela de Dados Conjunto de dados com os resultados da previsão

Exceções

Exceção Descrição
Erro 0001 Ocorrerá uma exceção se uma ou mais das colunas especificadas do conjunto de dados não puder ser encontrada.
Erro 0003 Ocorrerá uma exceção se uma ou mais das entradas for nula ou estiver vazia.
Erro 0004 Ocorrerá uma exceção se o parâmetro for inferior ou igual ao valor específico.
Erro 0017 Ocorrerá uma exceção se uma ou mais das colunas especificadas tiver um tipo sem suporte por módulo atual.

Para obter uma lista de erros específicos para módulos do Studio (clássicos), consulte Machine Learning códigos de erro.

Para obter uma lista de exceções de API, consulte Machine Learning códigos de erro da API REST.

Consulte também

Análise de Texto
Hash de recurso
Reconhecimento de entidade nomeada
Classificação do modelo Vowpal Wabbit 7-4
Treinar modelo do Vowpal Wabbit 7-4
Treinar modelo do Vowpal Wabbit 7-10
Lista de Módulo A-Z