Databricks Runtime 6.4 för Machine Learning (stöds inte)

Databricks släppte den här bilden i februari 2020.

Databricks Runtime 6.4 för Machine Learning tillhandahåller en färdig miljö för maskininlärning och datavetenskap baserat på Databricks Runtime 6.4 (stöds inte). Databricks Runtime ML innehåller många populära maskininlärningsbibliotek, inklusive TensorFlow, PyTorch, Keras och XGBoost. Det stöder även distribuerad djupinlärningsträning med Horovod.

Mer information, inklusive instruktioner för att skapa ett Databricks Runtime-ML kluster, finns i Databricks Runtime för Machine Learning.

Nya funktioner

Databricks Runtime 6.4 ML bygger på Databricks Runtime 6.4. Information om nyheter i Databricks Runtime 6.4 finns i viktig information om Databricks Runtime 6.4 (stöds inte ).

Förbättringar

Föråldringar

  • Det fristående keras paketet är inaktuellt och tas bort i en kommande större version av Databricks Runtime för ML. Databricks rekommenderar att du i stället använder tensorflow.keras.
  • Paketet pymongo är inaktuellt och tas bort i en kommande större version av Databricks Runtime för ML.

Uppgraderade maskininlärningsbibliotek

  • PyTorch: 1.3.1 till 1.4.0
  • Horovod: 0.18.2 till 1.19.0

Systemmiljö

Systemmiljön i Databricks Runtime 6.4 ML skiljer sig från Databricks Runtime 6.4 på följande sätt:

Bibliotek

I följande avsnitt visas de bibliotek som ingår i Databricks Runtime 6.4 ML som skiljer sig från de som ingår i Databricks Runtime 6.4.

I det här avsnittet:

Bibliotek på den översta nivån

Databricks Runtime 6.4 ML innehåller följande bibliotek på den översta nivån:

Python-bibliotek

Databricks Runtime 6.4 ML använder Conda för pakethantering i Python och innehåller många populära ML paket. I följande avsnitt beskrivs Conda-miljön för Databricks Runtime 6.4 ML.

Python på CPU-kluster

name: databricks-ml
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.9.0=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipykernel=5.1.0=py37h39e3cac_0
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.2.4=py37_0
  - jupyter_core=4.4.0=py37_0
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=he6710b0_1
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37he6710b0_1
  - py-xgboost-cpu=0.90=py37_1
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.4.0=py3.7_cpu_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - pyzmq=18.0.0=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
  - tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-mkl=1.15.0+db2=h4fcabd2_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.5.0=py37_cpu
  - tornado=6.0.2=py37h7b6447c_0
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.2.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.19.0
    - hyperopt==0.2.2.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.5.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml

Python på GPU-kluster

name: databricks-ml-gpu
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.9.0=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cudatoolkit=10.0.130=0
  - cudnn=7.6.4=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipykernel=5.1.0=py37h39e3cac_0
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.2.4=py37_0
  - jupyter_core=4.4.0=py37_0
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37h688424c_0
  - py-xgboost-gpu=0.90=py37h28bbb66_0
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.4.0=py3.7_cuda10.0.130_cudnn7.6.3_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - pyzmq=18.0.0=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
  - tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-gpu=1.15.0+db2=h0d30ee6_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.5.0=py37_cu100
  - tornado=6.0.2=py37h7b6447c_0
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.2.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.19.0
    - hyperopt==0.2.2.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.5.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu

Spark-paket som innehåller Python-moduler

Spark-paket Python-modul Version
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db12-spark2.4
tensorframes tensorframes 0.8.2-s_2.11

R-bibliotek

R-biblioteken är identiska med R-biblioteken i Databricks Runtime 6.4.

Java- och Scala-bibliotek (Scala 2.11-kluster)

Förutom Java- och Scala-bibliotek i Databricks Runtime 6.4 innehåller Databricks Runtime 6.4 ML följande JAR:er:

Grupp-ID Artefakt-ID Version
com.databricks spark-deep-learning 1.5.0-db12-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.15.0
ml.dmlc xgboost4j 0,90
ml.dmlc xgboost4j-spark 0,90
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.mlflow mlflow-client 1.4.0
org.tensorflow libtensorflow 1.15.0
org.tensorflow libtensorflow_jni 1.15.0
org.tensorflow spark-tensorflow-connector_2.11 1.15.0
org.tensorflow tensorflow 1.15.0
org.tensorframes tensorframes 0.8.2-s_2.11