Lambda 表达式的示例

本文演示如何在你的程序中使用 lambda 表达式。 有关 lambda 表达式的概述,请参阅 Lambda 表达式。 有关 lambda 表达式结构的详细信息,请参阅 Lambda 表达式语法

声明 Lambda 表达式

示例 1

由于 lambda 表达式已类型化,所以你可以将其指派给 auto 变量或 function 对象,如下所示:

// declaring_lambda_expressions1.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{
    using namespace std;

    // Assign the lambda expression that adds two numbers to an auto variable.
    auto f1 = [](int x, int y) { return x + y; };

    cout << f1(2, 3) << endl;

    // Assign the same lambda expression to a function object.
    function<int(int, int)> f2 = [](int x, int y) { return x + y; };

    cout << f2(3, 4) << endl;
}

此示例产生以下输出:

5
7

备注

有关详细信息,请参阅 autofunction函数调用

虽然 lambda 表达式多在函数的主体中声明,但是可以在初始化变量的任何地方声明。

示例 2

Microsoft C++ 编译器将在声明而非调用 lambda 表达式时,将表达式绑定到捕获的变量。 以下示例显示一个通过值捕获局部变量 i 并通过引用捕获局部变量 j 的 lambda 表达式。 由于 lambda 表达式通过值捕获 i,因此在程序后面部分中重新指派 i 不影响该表达式的结果。 但是,由于 lambda 表达式通过引用捕获 j,因此重新指派 j 会影响该表达式的结果。

// declaring_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{
   using namespace std;

   int i = 3;
   int j = 5;

   // The following lambda expression captures i by value and
   // j by reference.
   function<int (void)> f = [i, &j] { return i + j; };

   // Change the values of i and j.
   i = 22;
   j = 44;

   // Call f and print its result.
   cout << f() << endl;
}

此示例产生以下输出:

47

[本文内容]

调用 Lambda 表达式

你可以立即调用 Lambda 表达式,如下面的代码片段所示。 第二个代码片段演示如何将 lambda 作为自变量传递给标准库算法,例如 find_if

示例 1

以下示例声明的 lambda 表达式将返回两个整数的总和并使用自变量 54 立即调用该表达式:

// calling_lambda_expressions1.cpp
// compile with: /EHsc
#include <iostream>

int main()
{
   using namespace std;
   int n = [] (int x, int y) { return x + y; }(5, 4);
   cout << n << endl;
}

此示例产生以下输出:

9

示例 2

以下示例将 Lambda 表达式作为自变量传递给 find_if 函数。 如果 lambda 表达式的参数是偶数,则返回 true

// calling_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <list>
#include <algorithm>
#include <iostream>

int main()
{
    using namespace std;

    // Create a list of integers with a few initial elements.
    list<int> numbers;
    numbers.push_back(13);
    numbers.push_back(17);
    numbers.push_back(42);
    numbers.push_back(46);
    numbers.push_back(99);

    // Use the find_if function and a lambda expression to find the
    // first even number in the list.
    const list<int>::const_iterator result =
        find_if(numbers.begin(), numbers.end(),[](int n) { return (n % 2) == 0; });

    // Print the result.
    if (result != numbers.end()) {
        cout << "The first even number in the list is " << *result << "." << endl;
    } else {
        cout << "The list contains no even numbers." << endl;
    }
}

此示例产生以下输出:

The first even number in the list is 42.

备注

有关 find_if 函数的详细信息,请参阅 find_if。 有关执行公共算法的 C++ 标准库函数的详细信息,请参阅 <algorithm>

[本文内容]

嵌套 Lambda 表达式

示例

你可以将 lambda 表达式嵌套在另一个中,如下例所示。 内部 lambda 表达式将其自变量与 2 相乘并返回结果。 外部 lambda 表达式通过其自变量调用内部 lambda 表达式并在结果上加 3。

// nesting_lambda_expressions.cpp
// compile with: /EHsc /W4
#include <iostream>

int main()
{
    using namespace std;

    // The following lambda expression contains a nested lambda
    // expression.
    int timestwoplusthree = [](int x) { return [](int y) { return y * 2; }(x) + 3; }(5);

    // Print the result.
    cout << timestwoplusthree << endl;
}

此示例产生以下输出:

13

备注

在该示例中,[](int y) { return y * 2; } 是嵌套的 lambda 表达式。

[本文内容]

高阶 Lambda 函数

示例

许多编程语言支持“高阶函数”的概念。高阶函数是一个 lambda 表达式,它采用另一个 lambda 表达式作为其自变量,或返回 lambda 表达式。 你可以使用 function 类,使得 C++ lambda 表达式具有类似高阶函数的行为。 以下示例显示返回 function 对象的 lambda 表达式和采用 function 对象作为其参数的 lambda 表达式。

// higher_order_lambda_expression.cpp
// compile with: /EHsc /W4
#include <iostream>
#include <functional>

int main()
{
    using namespace std;

    // The following code declares a lambda expression that returns
    // another lambda expression that adds two numbers.
    // The returned lambda expression captures parameter x by value.
    auto addtwointegers = [](int x) -> function<int(int)> {
        return [=](int y) { return x + y; };
    };

    // The following code declares a lambda expression that takes another
    // lambda expression as its argument.
    // The lambda expression applies the argument z to the function f
    // and multiplies by 2.
    auto higherorder = [](const function<int(int)>& f, int z) {
        return f(z) * 2;
    };

    // Call the lambda expression that is bound to higherorder.
    auto answer = higherorder(addtwointegers(7), 8);

    // Print the result, which is (7+8)*2.
    cout << answer << endl;
}

此示例产生以下输出:

30

[本文内容]

在函数中使用 Lambda 表达式

示例

你可以在函数的主体中使用 lambda 表达式。 lambda 表达式可以访问该封闭函数可访问的任何函数或数据成员。 你可以显式或隐式捕获 this 指针,以提供对封闭类的函数和数据成员的访问路径。 Visual Studio 2017 版本 15.3 或更新版本(/std:c++17 及更新版本可用):在原始对象超出范围后,当可能会执行代码的异步或并行操作将使用 lambda 时,按值捕获 this ([*this])

可以在函数中显式使用 this 指针,如下所示:

// capture "this" by reference
void ApplyScale(const vector<int>& v) const
{
   for_each(v.begin(), v.end(),
      [this](int n) { cout << n * _scale << endl; });
}

// capture "this" by value (Visual Studio 2017 version 15.3 and later)
void ApplyScale2(const vector<int>& v) const
{
   for_each(v.begin(), v.end(),
      [*this](int n) { cout << n * _scale << endl; });
}

你也可以隐式捕获 this 指针:

void ApplyScale(const vector<int>& v) const
{
   for_each(v.begin(), v.end(),
      [=](int n) { cout << n * _scale << endl; });
}

以下示例显示封装小数位数值的 Scale 类。

// function_lambda_expression.cpp
// compile with: /EHsc /W4
#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class Scale
{
public:
    // The constructor.
    explicit Scale(int scale) : _scale(scale) {}

    // Prints the product of each element in a vector object
    // and the scale value to the console.
    void ApplyScale(const vector<int>& v) const
    {
        for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; });
    }

private:
    int _scale;
};

int main()
{
    vector<int> values;
    values.push_back(1);
    values.push_back(2);
    values.push_back(3);
    values.push_back(4);

    // Create a Scale object that scales elements by 3 and apply
    // it to the vector object. doesn't modify the vector.
    Scale s(3);
    s.ApplyScale(values);
}

此示例产生以下输出:

3
6
9
12

注解

ApplyScale 函数使用 lambda 表达式打印小数位数值与 vector 对象中的每个元素的乘积。 lambda 表达式隐式捕获 this 指针,以便访问 _scale 成员。

[本文内容]

配合使用 Lambda 表达式和模板

示例

由于 lambda 表达式已类型化,因此你可以将其与 C++ 模板一起使用。 下面的示例显示 negate_allprint_all 函数。 negate_all 函数将一元 operator- 应用于 vector 对象中的每个元素。 print_all 函数将 vector 对象中的每个元素打印到控制台。

// template_lambda_expression.cpp
// compile with: /EHsc
#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

// Negates each element in the vector object. Assumes signed data type.
template <typename T>
void negate_all(vector<T>& v)
{
    for_each(v.begin(), v.end(), [](T& n) { n = -n; });
}

// Prints to the console each element in the vector object.
template <typename T>
void print_all(const vector<T>& v)
{
    for_each(v.begin(), v.end(), [](const T& n) { cout << n << endl; });
}

int main()
{
    // Create a vector of signed integers with a few elements.
    vector<int> v;
    v.push_back(34);
    v.push_back(-43);
    v.push_back(56);

    print_all(v);
    negate_all(v);
    cout << "After negate_all():" << endl;
    print_all(v);
}

此示例产生以下输出:

34
-43
56
After negate_all():
-34
43
-56

注解

有关 C++ 模板的详细信息,请参阅模板

[本文内容]

处理异常

示例

lambda 表达式的主体遵循结构化异常处理 (SEH) 和 C++ 异常处理的原则。 你可以在 lambda 表达式主体中处理引发的异常或将异常处理推迟至封闭范围。 以下示例使用 for_each 函数和 lambda 表达式将一个 vector 对象的值填充到另一个中。 它使用 try/catch 块处理对第一个矢量的无效访问。

// eh_lambda_expression.cpp
// compile with: /EHsc /W4
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
    // Create a vector that contains 3 elements.
    vector<int> elements(3);

    // Create another vector that contains index values.
    vector<int> indices(3);
    indices[0] = 0;
    indices[-1] = 1; // This is not a valid subscript. It will trigger an exception.
    indices[2] = 2;

    // Use the values from the vector of index values to
    // fill the elements vector. This example uses a
    // try/catch block to handle invalid access to the
    // elements vector.
    try
    {
        for_each(indices.begin(), indices.end(), [&](int index) {
            elements.at(index) = index;
        });
    }
    catch (const out_of_range& e)
    {
        cerr << "Caught '" << e.what() << "'." << endl;
    };
}

此示例产生以下输出:

Caught 'invalid vector<T> subscript'.

备注

有关异常处理的详细信息,请参阅异常处理

[本文内容]

配合使用 Lambda 表达式和托管类型 (C++/CLI)

示例

lambda 表达式的捕获子句不能包含具有托管类型的变量。 但是,你可以将具有托管类型的实际参数传递到 lambda 表达式的形式参数列表。 以下示例包含一个 lambda 表达式,它通过值捕获局部非托管变量 ch,并采用 System.String 对象作为其参数。

// managed_lambda_expression.cpp
// compile with: /clr
using namespace System;

int main()
{
    char ch = '!'; // a local unmanaged variable

    // The following lambda expression captures local variables
    // by value and takes a managed String object as its parameter.
    [=](String ^s) {
        Console::WriteLine(s + Convert::ToChar(ch));
    }("Hello");
}

此示例产生以下输出:

Hello!

备注

你还可以配合使用 lambda 表达式和 STL/CLR 库。 有关详细信息,请参阅 STL/CLR 库参考

重要

以下公共语言运行时 (CLR) 托管实体中不支持 Lambda:ref classref structvalue class 以及 value struct

[本文内容]

另请参阅

Lambda 表达式
Lambda 表达式语法
auto
function
find_if
<algorithm>
函数调用
模板
异常处理
STL/CLR 库参考