What is Azure Search?

Azure Search is a search-as-a-service cloud solution that gives developers APIs and tools for adding a rich search experience over your content in web, mobile, and enterprise applications.

Functionality is exposed through a simple REST API or .NET SDK that masks the inherent complexity of information retrieval. In addition to APIs, the Azure portal provides administration and content management support, with tools for prototyping and querying your indexes. Because the service runs in the cloud, infrastructure and availability are managed by Microsoft.

Feature summary

Category Features
Full text search and text analysis Full text search is a primary use case for most search-based apps. Queries can be formulated using a supported syntax.

Simple query syntax provides logical operators, phrase search operators, suffix operators, precedence operators.

Lucene query syntax includes all operations in simple syntax, with extensions for fuzzy search, proximity search, term boosting, and regular expressions.
Data integration Azure Search indexes accept data from any source, provided it is submitted as a JSON data structure.

Optionally, for supported data sources in Azure, you can use indexers to automatically crawl Azure SQL Database, Azure Cosmos DB, or Azure Blob storage to sync your search index's content with your primary data store. Azure Blob indexers can perform document cracking for indexing major file formats, including Microsoft Office, PDF, and HTML documents.
Linguistic analysis Analyzers are components used for text processing during indexing and search operations. There are two types.

Custom lexical analyzers are used for complex search queries using phonetic matching and regular expressions.

Language analyzers from Lucene or Microsoft are used to intelligently handle language-specific linguistics including verb tenses, gender, irregular plural nouns (for example, 'mouse' vs. 'mice'), word de-compounding, word-breaking (for languages with no spaces), and more.
Geo-search Azure Search processes, filters, and displays geographic locations. It enables users to explore data based on the proximity of a search result to a physical location. Watch this video or review this sample to learn more.
User experience features Search suggestions can be enabled for type-ahead queries in a search bar. Actual documents in your index are suggested as users enter partial search input.

Faceted navigation is enabled through a single query parameter. Azure Search returns a faceted navigation structure you can use as the code behind a categories list, for self-directed filtering (for example, to filter catalog items by price-range or brand).

Filters can be used to incorporate faceted navigation into your application's UI, enhance query formulation, and filter based on user- or developer-specified criteria. Create filters using the OData syntax.

Hit highlighting applies text formatting to a matching keyword in search results. You can choose which fields return highlighted snippets.

Sorting is offered for multiple fields via the index schema and then toggled at query-time with a single search parameter.

Paging and throttling your search results is straightforward with the finely tuned control that Azure Search offers over your search results.
Relevance Simple scoring is a key benefit of Azure Search. Scoring profiles are used to model relevance as a function of values in the documents themselves. For example, you might want newer products or discounted products to appear higher in the search results. You can also build scoring profiles using tags for personalized scoring based on customer search preferences you've tracked and stored separately.
Monitoring and reporting Search traffic analytics are collected and analyzed to unlock insights from what users are typing into the search box.

Metrics on queries per second, latency, and throttling are captured and reported in portal pages with no additional configuration required. You can also easily monitor index and document counts so that you can adjust capacity as needed. For more information, see Service administration
Tools for prototyping and inspection In the portal, you can use the Import data wizard to configure indexers, index designer to stand up an index, and Search explorer to test queries and refine scoring profiles. You can also open any index to view its schema.
Infrastructure The highly available platform ensures an extremely reliable search service experience. When scaled properly, Azure Search offers a 99.9% SLA.

Fully managed and scalable as an end-to-end solution, Azure Search requires absolutely no infrastructure management. Your service can be tailored to your needs by scaling in two dimensions to handle more document storage, higher query loads, or both.

Step 1: Provision service

You can spin up an Azure Search service in the Azure portal or through the Azure Resource Management API. You can choose either the free service shared with other subscribers, or a paid tier that dedicates resources used only by your service. For paid tiers, you can scale a service in two dimensions:

  • Add Replicas to grow your capacity to handle heavy query loads.
  • Add Partitions to grow storage for more documents.

By handling document storage and query throughput separately, you can calibrate resourcing based on production requirements.

Step 2: Create index

Before you can upload searchable content, you must first define an Azure Search index. An index is like a database table that holds your data and can accept search queries. You define the index schema to map to reflect the structure of the documents you wish to search, similar to fields in a database.

A schema can be created in the Azure portal, or programmatically using the .NET SDK or REST API.

Step 3: Index data

After you define an index, you're ready to upload content. You can use either a push or pull model.

The pull model retrieves data from external data sources. It's supported through indexers that streamline and automate aspects of data ingestion, such as connecting to, reading, and serializing data. Indexers are available for Azure Cosmos DB, Azure SQL Database, Azure Blob Storage, and SQL Server hosted in an Azure VM. You can configure an indexer for on demand or scheduled data refresh.

The push model is provided through the SDK or REST APIs, used for sending updated documents to an index. You can push data from virtually any dataset using the JSON format. See Add, update, or delete Documents or How to use the .NET SDK) for guidance on loading data.

After populating an index, you can issue search queries to your service endpoint using simple HTTP requests with REST API or the .NET SDK.

How Azure Search compares

Customers often ask how Azure Search compares with other search-related solutions. The following table summarizes key differences.

Compared to Key differences
Bing Bing Web Search API searches the indexes on Bing.com for matching terms you submit. Indexes are built from HTML, XML, and other web content on public sites. Bing Custom Search offers the same crawler technology for web content types, scoped to individual web sites.

Azure Search searches an index you define, populated with data and documents you own, often from diverse sources. Azure Search has crawler capabilities for some data sources through indexers, but you can push any JSON document that conforms to your index schema into a single, consolidated searchable resource.
Database search SQL Server full text search is for content internal to the DBMS, in SQL tables.

Azure Search stores content from heterogeneous sources and offers specialized text processing features such as linguistic and custom analysis. The full text search engine in Azure Search is built on Apache Lucene, an industry standard in information retrieval.

Resource utilization is another inflection point. Natural language search is often computationally intensive. Offloading search to a dedicated solution preserves resources for transaction processing. By externalizing search, you can easily adjust scale to match query volume.
Dedicated search solution On premises or cloud service solutions are dedicated search solutions with full spectrum functionality. Search technologies typically offer control over indexing and query pipelines, access to richer query and filtering syntax, control over rank and relevance, and features for self-directed and intelligent search.

You can find dedicated search solutions offered as a cloud service or as a standalone server hosted on premises or on a virtual machine. A cloud service is the right choice if you want a turn-key solution with minimal overhead and maintenance, and adjustable scale.

Within the cloud paradigm, several providers offer comparable baseline features, with full-text search, geo-search, and the ability to handle a certain level of ambiguity in search inputs. Typically, it's a specialized feature, or the ease and overall simplicity of APIs, tools, and management that determines the best fit.

Among cloud providers, Azure Search is strongest for full text search workloads over content stores and databases on Azure, for apps that rely primarily on search for both information retrieval and content navigation. Key strengths include:

  • Azure data integration (crawlers) at the indexing layer
  • Azure portal for central management
  • Azure scale, reliability, and world-class availability
  • Linguistic and custom analysis, with analyzers for solid full text search in 56 languages
  • Core features common to search-centric apps: scoring, faceting, suggestions, synonyms, geo-search, and more.


Non-Azure data sources are fully supported, but rely on a more code-intensive push methodology rather than indexers. Using APIs, you can pipe any JSON document collection to an Azure Search index.

Among our customers, those able to leverage the widest range of features in Azure Search include online catalogs, line-of-business programs, and document discovery applications.


While many tasks can be performed in the portal, Azure Search is intended for developers who want to integrate search functionality into existing applications. The following programming interfaces are available.

Platform Description
REST HTTP commands supported by any programming platform and language, including Xamarin, Java, and JavaScript
.NET SDK .NET wrapper for the REST API offers efficient coding in C# and other managed-code languages targeting the .NET Framework

Free trial

Azure subscribers can provision a service in the Free tier.

If you aren't a subscriber, you can open an Azure account for free. You get credits for trying out paid Azure services. After they're used up, you can keep the account and use free Azure services. Your credit card is never charged unless you explicitly change your settings and ask to be charged.

Alternatively, you can activate MSDN subscriber benefits: Your MSDN subscription gives you credits every month that you can use for paid Azure services.

How to get started

  1. Create a service in the Free tier.

  2. Step through one or more of the following tutorials.

Search engines are the common drivers of information retrieval in mobile apps, on the web, and in corporate data stores. Azure Search gives you tools for creating a search experience similar to those on large commercial web sites.

In this 9-minute video from program manager Liam Cavanagh, learn how integrating a search engine can benefit your app. Short demos cover key features in Azure Search, and what a typical workflow looks like.

  • 0-3 minutes covers key features and use-cases.
  • 3-4 minutes covers service provisioning.
  • 4-6 minutes covers Import Data wizard used to create an index using the built-in real estate dataset.
  • 6-9 minutes covers Search Explorer and various queries.