# CGAffineTransform.Rotate Method

## Definition

 Rotate(nfloat, MatrixOrder) Rotate(CGAffineTransform, nfloat) Applies a rotation to the affine by the specified angle, in radians. Rotate(nfloat) Applies a rotation to the affine by the specified angle, in radians.

## Rotate(nfloat, MatrixOrder)

``public void Rotate (nfloat angle, CoreGraphics.MatrixOrder order);``
``member this.Rotate : nfloat * CoreGraphics.MatrixOrder -> unit``

angle
nfloat
order
MatrixOrder

## Rotate(CGAffineTransform, nfloat)

Applies a rotation to the affine by the specified angle, in radians.

``public static CoreGraphics.CGAffineTransform Rotate (CoreGraphics.CGAffineTransform transform, nfloat angle);``
``static member Rotate : CoreGraphics.CGAffineTransform * nfloat -> CoreGraphics.CGAffineTransform``

#### Parameters

transform
CGAffineTransform

The affine to rotate.

angle
nfloat

#### Returns

CGAffineTransform

The rotated affine.

### Remarks

This method is equivalent to the native CoreGraphics' CGAffineTransformRotate method.

Developers should note that this static method, M:CoreGraphics.CGAffineTransform.Rotate(CoreGraphics.CGAffineTransform,System.Single), left-multiplies `transform` by the rotation transformation that is defined by the `angle`. The multiplication order is, importantly, the reverse of what the developer expects from the instance method, M:CoreGraphics.CGAffineTransform.Rotate(System.Single).

## Rotate(nfloat)

Applies a rotation to the affine by the specified angle, in radians.

``````[Foundation.Advice("By default, the new operation is applied after the old operation: t' = t * [ cos(angle) sin(angle) -sin(angle) cos(angle) 0 0 ].\nTo have the same behavior as the native Swift API, pass 'MatrixOrder.Prepend' to 'Rotate (nfloat, MatrixOrder)'.")]
public void Rotate (nfloat angle);``````
``public void Rotate (nfloat angle);``
``member this.Rotate : nfloat -> unit``

#### Parameters

angle
nfloat

Developers should note that this instance method, M:CoreGraphics.CGAffineTransform.Rotate(System.Single), right-multiplies itself by the rotation transformation that is defined by the `angle`.