UnicodeEncoding Class

Definition

Represents a UTF-16 encoding of Unicode characters.

public ref class UnicodeEncoding : System::Text::Encoding
public class UnicodeEncoding : System.Text.Encoding
[System.Serializable]
public class UnicodeEncoding : System.Text.Encoding
[System.Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
public class UnicodeEncoding : System.Text.Encoding
type UnicodeEncoding = class
    inherit Encoding
[<System.Serializable>]
type UnicodeEncoding = class
    inherit Encoding
[<System.Serializable>]
[<System.Runtime.InteropServices.ComVisible(true)>]
type UnicodeEncoding = class
    inherit Encoding
Public Class UnicodeEncoding
Inherits Encoding
Inheritance
UnicodeEncoding
Attributes

Examples

The following example demonstrates how to encode a string of Unicode characters into a byte array by using a UnicodeEncoding object. The byte array is decoded into a string to demonstrate that there is no loss of data.

using namespace System;
using namespace System::Text;
using namespace System::Collections;
int main()
{
   
   // The encoding.
   UnicodeEncoding^ unicode = gcnew UnicodeEncoding;
   
   // Create a String* that contains Unicode characters.
   String^ unicodeString = L"This Unicode string contains two characters with codes outside the traditional ASCII code range, Pi (\u03a0) and Sigma (\u03a3).";
   Console::WriteLine( "Original string:" );
   Console::WriteLine( unicodeString );
   
   // Encode the String*.
   array<Byte>^encodedBytes = unicode->GetBytes( unicodeString );
   Console::WriteLine();
   Console::WriteLine( "Encoded bytes:" );
   IEnumerator^ myEnum = encodedBytes->GetEnumerator();
   while ( myEnum->MoveNext() )
   {
      Byte b = safe_cast<Byte>(myEnum->Current);
      Console::Write( "[{0}]", b );
   }

   Console::WriteLine();
   
   // Decode bytes back to String*.
   // Notice Pi and Sigma characters are still present.
   String^ decodedString = unicode->GetString( encodedBytes );
   Console::WriteLine();
   Console::WriteLine( "Decoded bytes:" );
   Console::WriteLine( decodedString );
}
using System;
using System.Text;

class UnicodeEncodingExample {
    public static void Main() {
        // The encoding.
        UnicodeEncoding unicode = new UnicodeEncoding();
        
        // Create a string that contains Unicode characters.
        String unicodeString =
            "This Unicode string contains two characters " +
            "with codes outside the traditional ASCII code range, " +
            "Pi (\u03a0) and Sigma (\u03a3).";
        Console.WriteLine("Original string:");
        Console.WriteLine(unicodeString);

        // Encode the string.
        Byte[] encodedBytes = unicode.GetBytes(unicodeString);
        Console.WriteLine();
        Console.WriteLine("Encoded bytes:");
        foreach (Byte b in encodedBytes) {
            Console.Write("[{0}]", b);
        }
        Console.WriteLine();
        
        // Decode bytes back to string.
        // Notice Pi and Sigma characters are still present.
        String decodedString = unicode.GetString(encodedBytes);
        Console.WriteLine();
        Console.WriteLine("Decoded bytes:");
        Console.WriteLine(decodedString);
    }
}
Imports System.Text
Imports Microsoft.VisualBasic.Strings

Class UnicodeEncodingExample
    
    Public Shared Sub Main()
        ' The encoding.
        Dim uni As New UnicodeEncoding()
        
        ' Create a string that contains Unicode characters.
        Dim unicodeString As String = _
            "This Unicode string contains two characters " & _
            "with codes outside the traditional ASCII code range, " & _
            "Pi (" & ChrW(928) & ") and Sigma (" & ChrW(931) & ")."
        Console.WriteLine("Original string:")
        Console.WriteLine(unicodeString)
        
        ' Encode the string.
        Dim encodedBytes As Byte() = uni.GetBytes(unicodeString)
        Console.WriteLine()
        Console.WriteLine("Encoded bytes:")
        Dim b As Byte
        For Each b In  encodedBytes
            Console.Write("[{0}]", b)
        Next b
        Console.WriteLine()
        
        ' Decode bytes back to string.
        ' Notice Pi and Sigma characters are still present.
        Dim decodedString As String = uni.GetString(encodedBytes)
        Console.WriteLine()
        Console.WriteLine("Decoded bytes:")
        Console.WriteLine(decodedString)
    End Sub
End Class

The following example uses the same string as the previous one, except that it writes the encoded bytes to a file and prefixes the byte stream with a byte order mark (BOM). It then reads the file in two different ways: as a text file by using a StreamReader object; and as a binary file. As you would expect, neither newly-read string includes the BOM.

using System;
using System.IO;
using System.Text;

public class Example
{
   public static void Main()
   {
        // Create a UTF-16 encoding that supports a BOM.
        Encoding unicode = new UnicodeEncoding();

        // A Unicode string with two characters outside an 8-bit code range.
        String unicodeString =
            "This Unicode string has 2 characters outside the " +
            "ASCII range: \n" +
            "Pi (\u03A0)), and Sigma (\u03A3).";
        Console.WriteLine("Original string:");
        Console.WriteLine(unicodeString);
        Console.WriteLine();

        // Encode the string.
        Byte[] encodedBytes = unicode.GetBytes(unicodeString);
        Console.WriteLine("The encoded string has {0} bytes.\n",
                          encodedBytes.Length);

        // Write the bytes to a file with a BOM.
        var fs = new FileStream(@".\UTF8Encoding.txt", FileMode.Create);
        Byte[] bom = unicode.GetPreamble();
        fs.Write(bom, 0, bom.Length);
        fs.Write(encodedBytes, 0, encodedBytes.Length);
        Console.WriteLine("Wrote {0} bytes to the file.\n", fs.Length);
        fs.Close();

        // Open the file using StreamReader.
        var sr = new StreamReader(@".\UTF8Encoding.txt");
        String newString = sr.ReadToEnd();
        sr.Close();
        Console.WriteLine("String read using StreamReader:");
        Console.WriteLine(newString);
        Console.WriteLine();

        // Open the file as a binary file and decode the bytes back to a string.
        fs = new FileStream(@".\UTF8Encoding.txt", FileMode.Open);
        Byte[] bytes = new Byte[fs.Length];
        fs.Read(bytes, 0, (int)fs.Length);
        fs.Close();

        String decodedString = unicode.GetString(bytes);
        Console.WriteLine("Decoded bytes:");
        Console.WriteLine(decodedString);
   }
}
// The example displays the following output:
//    Original string:
//    This Unicode string has 2 characters outside the ASCII range:
//    Pi (π), and Sigma (Σ).
//
//    The encoded string has 172 bytes.
//
//    Wrote 174 bytes to the file.
//
//    String read using StreamReader:
//    This Unicode string has 2 characters outside the ASCII range:
//    Pi (π), and Sigma (Σ).
//
//    Decoded bytes:
//    This Unicode string has 2 characters outside the ASCII range:
//    Pi (π), and Sigma (Σ).
Imports System.IO
Imports System.Text

Class Example
    Public Shared Sub Main()
        ' Create a UTF-16 encoding that supports a BOM.
        Dim unicode As New UnicodeEncoding()
        
        ' A Unicode string with two characters outside an 8-bit code range.
        Dim unicodeString As String = _
            "This Unicode string has 2 characters outside the " &
            "ASCII range: " & vbCrLf &
            "Pi (" & ChrW(&h03A0) & "), and Sigma (" & ChrW(&h03A3) & ")."
        Console.WriteLine("Original string:")
        Console.WriteLine(unicodeString)
        Console.WriteLine()
        
        ' Encode the string.
        Dim encodedBytes As Byte() = unicode.GetBytes(unicodeString)
        Console.WriteLine("The encoded string has {0} bytes.",
                          encodedBytes.Length)
        Console.WriteLine()
        
        ' Write the bytes to a file with a BOM.
        Dim fs As New FileStream(".\UnicodeEncoding.txt", FileMode.Create)
        Dim bom() As Byte = unicode.GetPreamble()
        fs.Write(bom, 0, bom.Length)
        fs.Write(encodedBytes, 0, encodedBytes.Length)
        Console.WriteLine("Wrote {0} bytes to the file.", fs.Length)
        fs.Close()
        Console.WriteLine()
        
        ' Open the file using StreamReader.
        Dim sr As New StreamReader(".\UnicodeEncoding.txt")
        Dim newString As String = sr.ReadToEnd()
        sr.Close()
        Console.WriteLine("String read using StreamReader:")
        Console.WriteLine(newString)
        Console.WriteLine()
        
        ' Open the file as a binary file and decode the bytes back to a string.
        fs = new FileStream(".\UnicodeEncoding.txt", FileMode.Open)
        Dim bytes(fs.Length - 1) As Byte
        fs.Read(bytes, 0, fs.Length)
        fs.Close()

        Dim decodedString As String = unicode.GetString(bytes)
        Console.WriteLine("Decoded bytes:")
        Console.WriteLine(decodedString)
    End Sub
End Class
' The example displays the following output:
'    Original string:
'    This Unicode string has 2 characters outside the ASCII range:
'    Pi (π), and Sigma (Σ).
'
'    The encoded string has 172 bytes.
'
'    Wrote 174 bytes to the file.
'
'    String read using StreamReader:
'    This Unicode string has 2 characters outside the ASCII range:
'    Pi (π), and Sigma (Σ).
'
'    Decoded bytes:
'    This Unicode string has 2 characters outside the ASCII range:
'    Pi (π), and Sigma (Σ).

Remarks

Encoding is the process of transforming a set of Unicode characters into a sequence of bytes. Decoding is the process of transforming a sequence of encoded bytes into a set of Unicode characters.

The Unicode Standard assigns a code point (a number) to each character in every supported script. A Unicode Transformation Format (UTF) is a way to encode that code point. The Unicode Standard uses the following UTFs:

  • UTF-8, which represents each code point as a sequence of one to four bytes.

  • UTF-16, which represents each code point as a sequence of one to two 16-bit integers.

  • UTF-32, which represents each code point as a 32-bit integer.

For more information about the UTFs and other encodings supported by System.Text, see Character Encoding in the .NET Framework.

The UnicodeEncoding class represents a UTF-16 encoding. The encoder can use either big endian byte order (most significant byte first) or little endian byte order (least significant byte first). For example, the Latin Capital Letter A (code point U+0041) is serialized as follows (in hexadecimal):

  • Big endian byte order: 00 00 00 41

  • Little endian byte order: 41 00 00 00

It is generally more efficient to store Unicode characters using the native byte order of a particular platform. For example, it is better to use the little endian byte order on little endian platforms, such as Intel computers. The UnicodeEncoding class corresponds to the Windows code pages 1200 (little endian byte order) and 1201 (big endian byte order). You can determine the "endianness" of a particular architecture by calling the BitConverter.IsLittleEndian method.

Optionally, the UnicodeEncoding object provides a byte order mark (BOM), which is an array of bytes that can be prefixed to the sequence of bytes resulting from the encoding process. If the preamble contains a byte order mark (BOM), it helps the decoder determine the byte order and the transformation format or UTF.

If the UnicodeEncoding instance is configured to provide a BOM, you can retrieve it by calling the GetPreamble method; otherwise, the method returns an empty array. Note that, even if a UnicodeEncoding object is configured for BOM support, you must include the BOM at the beginning of the encoded byte stream as appropriate; the encoding methods of the UnicodeEncoding class do not do this automatically.

Caution

To enable error detection and to make the class instance more secure, you should instantiate a UnicodeEncoding object by calling the UnicodeEncoding(Boolean, Boolean, Boolean) constructor and setting its throwOnInvalidBytes argument to true. With error detection, a method that detects an invalid sequence of characters or bytes throws a ArgumentException. Without error detection, no exception is thrown, and the invalid sequence is generally ignored.

You can instantiate a UnicodeEncoding object in a number of ways, depending on whether you want to it to provide a byte order mark (BOM), whether you want big-endian or little-endian encoding, and whether you want to enable error detection. The following table lists the UnicodeEncoding constructors and the Encoding properties that return a UnicodeEncoding object.

Member Endianness BOM Error detection
BigEndianUnicode Big-endian Yes No (Replacement fallback)
Encoding.Unicode Little-endian Yes No (Replacement fallback)
UnicodeEncoding.UnicodeEncoding() Little-endian Yes No (Replacement fallback)
UnicodeEncoding(Boolean, Boolean) Configurable Configurable No (Replacement fallback)
UnicodeEncoding.UnicodeEncoding(Boolean, Boolean, Boolean) Configurable Configurable Configurable

The GetByteCount method determines how many bytes result in encoding a set of Unicode characters, and the GetBytes method performs the actual encoding.

Likewise, the GetCharCount method determines how many characters result in decoding a sequence of bytes, and the GetChars and GetString methods perform the actual decoding.

For an encoder or decoder that is able to save state information when encoding or decoding data that spans multiple blocks (such as string of 1 million characters that is encoded in 100,000-character segments), use the GetEncoder and GetDecoder properties, respectively.

Constructors

UnicodeEncoding()

Initializes a new instance of the UnicodeEncoding class.

UnicodeEncoding(Boolean, Boolean)

Initializes a new instance of the UnicodeEncoding class. Parameters specify whether to use the big endian byte order and whether the GetPreamble() method returns a Unicode byte order mark.

UnicodeEncoding(Boolean, Boolean, Boolean)

Initializes a new instance of the UnicodeEncoding class. Parameters specify whether to use the big endian byte order, whether to provide a Unicode byte order mark, and whether to throw an exception when an invalid encoding is detected.

Fields

CharSize

Represents the Unicode character size in bytes. This field is a constant.

Properties

BodyName

When overridden in a derived class, gets a name for the current encoding that can be used with mail agent body tags.

(Inherited from Encoding)
CodePage

When overridden in a derived class, gets the code page identifier of the current Encoding.

(Inherited from Encoding)
DecoderFallback

Gets or sets the DecoderFallback object for the current Encoding object.

(Inherited from Encoding)
EncoderFallback

Gets or sets the EncoderFallback object for the current Encoding object.

(Inherited from Encoding)
EncodingName

When overridden in a derived class, gets the human-readable description of the current encoding.

(Inherited from Encoding)
HeaderName

When overridden in a derived class, gets a name for the current encoding that can be used with mail agent header tags.

(Inherited from Encoding)
IsBrowserDisplay

When overridden in a derived class, gets a value indicating whether the current encoding can be used by browser clients for displaying content.

(Inherited from Encoding)
IsBrowserSave

When overridden in a derived class, gets a value indicating whether the current encoding can be used by browser clients for saving content.

(Inherited from Encoding)
IsMailNewsDisplay

When overridden in a derived class, gets a value indicating whether the current encoding can be used by mail and news clients for displaying content.

(Inherited from Encoding)
IsMailNewsSave

When overridden in a derived class, gets a value indicating whether the current encoding can be used by mail and news clients for saving content.

(Inherited from Encoding)
IsReadOnly

When overridden in a derived class, gets a value indicating whether the current encoding is read-only.

(Inherited from Encoding)
IsSingleByte

When overridden in a derived class, gets a value indicating whether the current encoding uses single-byte code points.

(Inherited from Encoding)
Preamble

Gets a Unicode byte order mark encoded in UTF-16 format, if this object is configured to supply one.

Preamble

When overridden in a derived class, returns a span containing the sequence of bytes that specifies the encoding used.

(Inherited from Encoding)
WebName

When overridden in a derived class, gets the name registered with the Internet Assigned Numbers Authority (IANA) for the current encoding.

(Inherited from Encoding)
WindowsCodePage

When overridden in a derived class, gets the Windows operating system code page that most closely corresponds to the current encoding.

(Inherited from Encoding)

Methods

Clone()

When overridden in a derived class, creates a shallow copy of the current Encoding object.

(Inherited from Encoding)
Equals(Object)

Determines whether the specified Object is equal to the current UnicodeEncoding object.

GetByteCount(Char*, Int32)

Calculates the number of bytes produced by encoding a set of characters starting at the specified character pointer.

GetByteCount(Char*, Int32)

When overridden in a derived class, calculates the number of bytes produced by encoding a set of characters starting at the specified character pointer.

(Inherited from Encoding)
GetByteCount(Char[])

When overridden in a derived class, calculates the number of bytes produced by encoding all the characters in the specified character array.

(Inherited from Encoding)
GetByteCount(Char[], Int32, Int32)

Calculates the number of bytes produced by encoding a set of characters from the specified character array.

GetByteCount(ReadOnlySpan<Char>)

When overridden in a derived class, calculates the number of bytes produced by encoding the characters in the specified character span.

(Inherited from Encoding)
GetByteCount(String)

Calculates the number of bytes produced by encoding the characters in the specified string.

GetByteCount(String, Int32, Int32)

When overridden in a derived class, calculates the number of bytes produced by encoding a set of characters from the specified string.

(Inherited from Encoding)
GetBytes(Char*, Int32, Byte*, Int32)

Encodes a set of characters starting at the specified character pointer into a sequence of bytes that are stored starting at the specified byte pointer.

GetBytes(Char*, Int32, Byte*, Int32)

When overridden in a derived class, encodes a set of characters starting at the specified character pointer into a sequence of bytes that are stored starting at the specified byte pointer.

(Inherited from Encoding)
GetBytes(Char[])

When overridden in a derived class, encodes all the characters in the specified character array into a sequence of bytes.

(Inherited from Encoding)
GetBytes(Char[], Int32, Int32)

When overridden in a derived class, encodes a set of characters from the specified character array into a sequence of bytes.

(Inherited from Encoding)
GetBytes(Char[], Int32, Int32, Byte[], Int32)

Encodes a set of characters from the specified character array into the specified byte array.

GetBytes(ReadOnlySpan<Char>, Span<Byte>)

When overridden in a derived class, encodes into a span of bytes a set of characters from the specified read-only span.

(Inherited from Encoding)
GetBytes(String)

Encodes a set of characters from the specified string into the specified byte array.

GetBytes(String)

When overridden in a derived class, encodes all the characters in the specified string into a sequence of bytes.

(Inherited from Encoding)
GetBytes(String, Int32, Int32)

When overridden in a derived class, encodes into an array of bytes the number of characters specified by count in the specified string, starting from the specified index.

(Inherited from Encoding)
GetBytes(String, Int32, Int32, Byte[], Int32)

Encodes a set of characters from the specified String into the specified byte array.

GetCharCount(Byte*, Int32)

Calculates the number of characters produced by decoding a sequence of bytes starting at the specified byte pointer.

GetCharCount(Byte*, Int32)

When overridden in a derived class, calculates the number of characters produced by decoding a sequence of bytes starting at the specified byte pointer.

(Inherited from Encoding)
GetCharCount(Byte[])

When overridden in a derived class, calculates the number of characters produced by decoding all the bytes in the specified byte array.

(Inherited from Encoding)
GetCharCount(Byte[], Int32, Int32)

Calculates the number of characters produced by decoding a sequence of bytes from the specified byte array.

GetCharCount(ReadOnlySpan<Byte>)

When overridden in a derived class, calculates the number of characters produced by decoding the provided read-only byte span.

(Inherited from Encoding)
GetChars(Byte*, Int32, Char*, Int32)

Decodes a sequence of bytes starting at the specified byte pointer into a set of characters that are stored starting at the specified character pointer.

GetChars(Byte*, Int32, Char*, Int32)

When overridden in a derived class, decodes a sequence of bytes starting at the specified byte pointer into a set of characters that are stored starting at the specified character pointer.

(Inherited from Encoding)
GetChars(Byte[])

When overridden in a derived class, decodes all the bytes in the specified byte array into a set of characters.

(Inherited from Encoding)
GetChars(Byte[], Int32, Int32)

When overridden in a derived class, decodes a sequence of bytes from the specified byte array into a set of characters.

(Inherited from Encoding)
GetChars(Byte[], Int32, Int32, Char[], Int32)

Decodes a sequence of bytes from the specified byte array into the specified character array.

GetChars(ReadOnlySpan<Byte>, Span<Char>)

When overridden in a derived class, decodes all the bytes in the specified read-only byte span into a character span.

(Inherited from Encoding)
GetDecoder()

Obtains a decoder that converts a UTF-16 encoded sequence of bytes into a sequence of Unicode characters.

GetEncoder()

Obtains an encoder that converts a sequence of Unicode characters into a UTF-16 encoded sequence of bytes.

GetEncoder()

When overridden in a derived class, obtains an encoder that converts a sequence of Unicode characters into an encoded sequence of bytes.

(Inherited from Encoding)
GetHashCode()

Returns the hash code for the current instance.

GetMaxByteCount(Int32)

Calculates the maximum number of bytes produced by encoding the specified number of characters.

GetMaxCharCount(Int32)

Calculates the maximum number of characters produced by decoding the specified number of bytes.

GetPreamble()

Returns a Unicode byte order mark encoded in UTF-16 format, if the constructor for this instance requests a byte order mark.

GetString(Byte*, Int32)

When overridden in a derived class, decodes a specified number of bytes starting at a specified address into a string.

(Inherited from Encoding)
GetString(Byte[])

When overridden in a derived class, decodes all the bytes in the specified byte array into a string.

(Inherited from Encoding)
GetString(Byte[], Int32, Int32)

Decodes a range of bytes from a byte array into a string.

GetString(Byte[], Int32, Int32)

When overridden in a derived class, decodes a sequence of bytes from the specified byte array into a string.

(Inherited from Encoding)
GetString(ReadOnlySpan<Byte>)

When overridden in a derived class, decodes all the bytes in the specified byte span into a string.

(Inherited from Encoding)
GetType()

Gets the Type of the current instance.

(Inherited from Object)
IsAlwaysNormalized()

Gets a value indicating whether the current encoding is always normalized, using the default normalization form.

(Inherited from Encoding)
IsAlwaysNormalized(NormalizationForm)

When overridden in a derived class, gets a value indicating whether the current encoding is always normalized, using the specified normalization form.

(Inherited from Encoding)
MemberwiseClone()

Creates a shallow copy of the current Object.

(Inherited from Object)
ToString()

Returns a string that represents the current object.

(Inherited from Object)
TryGetBytes(ReadOnlySpan<Char>, Span<Byte>, Int32)

Encodes into a span of bytes a set of characters from the specified read-only span if the destination is large enough.

(Inherited from Encoding)
TryGetChars(ReadOnlySpan<Byte>, Span<Char>, Int32)

Decodes into a span of chars a set of bytes from the specified read-only span if the destination is large enough.

(Inherited from Encoding)

Extension Methods

GetBytes(Encoding, ReadOnlySequence<Char>)

Encodes the specified ReadOnlySequence<T> into a Byte array using the specified Encoding.

GetBytes(Encoding, ReadOnlySequence<Char>, IBufferWriter<Byte>)

Decodes the specified ReadOnlySequence<T> to bytes using the specified Encoding and writes the result to writer.

GetBytes(Encoding, ReadOnlySequence<Char>, Span<Byte>)

Encodes the specified ReadOnlySequence<T> to bytes using the specified Encoding and outputs the result to bytes.

GetBytes(Encoding, ReadOnlySpan<Char>, IBufferWriter<Byte>)

Encodes the specified ReadOnlySpan<T> to bytes using the specified Encoding and writes the result to writer.

GetChars(Encoding, ReadOnlySequence<Byte>, IBufferWriter<Char>)

Decodes the specified ReadOnlySequence<T> to chars using the specified Encoding and writes the result to writer.

GetChars(Encoding, ReadOnlySequence<Byte>, Span<Char>)

Decodes the specified ReadOnlySequence<T> to chars using the specified Encoding and outputs the result to chars.

GetChars(Encoding, ReadOnlySpan<Byte>, IBufferWriter<Char>)

Decodes the specified ReadOnlySpan<T> to chars using the specified Encoding and writes the result to writer.

GetString(Encoding, ReadOnlySequence<Byte>)

Decodes the specified ReadOnlySequence<T> into a String using the specified Encoding.

Applies to

See also