Data omvandling – filter

I den här artikeln beskrivs hur du kan använda filter modulerna i Azure Machine Learning Studio (klassisk) för att transformera digitala data. Modulerna i den här gruppen med verktyg för Machine Learning Studio (klassisk) baseras på filter som har utvecklats för teknik för digital signal bearbetning.

Anteckning

Gäller för: Machine Learning Studio (klassisk)

Det här innehållet gäller endast Studio (klassisk). Liknande dra-och släpp moduler har lagts till i Azure Machine Learning designer. Mer information i den här artikeln är att jämföra de två versionerna.

Filter tillämpas vanligt vis på data i data bearbetnings fasen eller för bearbetnings fasen. Filter förbättrar skärpan på den signal som används för maskin inlärning. Du kan till exempel använda filter modulerna i Machine Learning Studio (klassisk) för dessa bearbetnings uppgifter:

  • Rensa våg former som används för tal igenkänning.
  • Identifiera trender eller ta bort säsongs effekter i data som är till för data störningar i försäljning eller ekonomiska data.
  • Analysera mönster eller artefakter i telemetri signaler.

Dessa moduler ger enkel konfiguration av filter genom att använda välkända algoritmer för att matematiskt transformera våg data. Du kan också skapa ett anpassat filter om du redan har fastställt rätt koefficienter som ska gälla för dina data.

Om du behöver utföra uppgifter som att utesluta data från en data uppsättning på rad-för-rad-basis, ta bort saknade värden eller minska storleken på en data uppsättning, använder du dessa moduler i stället:

  • Rensa saknade data: ta bort saknade värden eller Ersätt saknade värden med plats hållare.
  • Partition och exempel: dividera eller filtrera din data uppsättning med hjälp av villkor som ett datum intervall, ett särskilt värde eller reguljära uttryck.
  • Klipp värden: Ange ett värde intervall och Behåll endast värdena inom intervallet.

Filter i bearbetning av digitala signaler

Precis som du kan koppla ett filter till en kamera för att kompensera för belysning eller för att skapa specialeffekter kan du använda ett filter för de data som du använder för maskin inlärning. Filter kan hjälpa till att förbättra skärpan i en signal, fånga in intressanta egenskaper eller minska bruset.

Det idealiska filtret eliminerar all brus och har enhetlig känslighet för önskad signal. Men det kan ta många iterationer eller kombinationer av tekniker att utforma även ett ganska användbart filter. Om du lyckas utforma ett effektivt filter bör du överväga att spara filtret så att du kan återanvända det när du omformar nya data.

I allmänhet baseras filtreringen på principerna för våg analys. När du skapar ett filter kan du leta efter sätt att undertrycka eller dämpa delar av signalen, för att exponera underliggande trender, för att minska bruset och störningar, eller för att identifiera data värden som annars kanske inte uppfattas.

Olika tekniker används för att dela upp enskilda trender eller våg Forms komponenter som skapar faktiska data värden. Värde serien kan analyseras med hjälp av trigonometriska funktioner för att identifiera och isolera enskilda våg former. (Detta är sant oavsett om det är en econometric-serie eller sammansatta frekvenser för ljud signaler.) Filter kan sedan tillämpas på dessa våg former för att eliminera brus, dämpa vissa vågor eller ta bort mål komponenter.

När filtrering används i en brus serie för att isolera olika komponenter kan du ange vilka frekvenser som ska tas bort eller Förstärk genom att ange frekvensen för frekvens att arbeta med.

Digitala filter i Machine Learning Studio (klassisk)

Följande typer av filter stöds i Machine Learning Studio (klassisk):

  • Filter som baseras på Waveform-dekomposition. Exempel på detta är IIR-filter (reimpulsed Impulse Response) och oändlig Response (). Dessa filter fungerar genom att ta bort vissa komponenter från en övergripande serie. Sedan kan du Visa och undersöka den förenklade våg formen.
  • Filter som baseras på glidande medelvärden eller median värden. Dessa filter utjämnar variationer i en data serie genom att medelvärdet över hela Windows. Windows kan vara fixerat eller glidande och kan ha olika former. Till exempel är ett triangulärt fönster toppar i den aktuella data punkten (vikter det aktuella värdet starkare) och stängs av före och efter data punkten (vikter före och efter följande värden är mindre starkt).
  • Användardefinierade eller anpassade filter. Om du redan vet vilka omvandlingar som ska tillämpas på en data serie kan du skapa ett användardefinierat filter. Du anger de numeriska koefficienter som används för att transformera data serien. Ett anpassat filter kan emulera ett FIR-eller IIR-filter. Men med ett anpassat filter har du mer kontroll över de värden som ska användas vid varje punkt i serien.

Filter terminologi

Följande lista innehåller enkla definitioner av termer som används i parametrar och filter egenskaper:

  • Passband: intervallet av frekvenser som kan passera genom ett filter utan att försämras eller minskas.
  • Stopband: ett intervall med frekvenser mellan angivna gränser genom vilka signaler inte skickas. Du definierar stopband genom att ställa in gräns frekvenser.
  • Högt pass: Låt oss bara använda höga frekvenser.
  • Lågt pass: acceptera endast frekvenser under ett angivet gräns värde.
  • Hörn: definierar avgränsningen mellan frekvenserna för stopband och passband. Normalt kan du välja om hörnen ska tas med i eller exkluderas från bandet. Ett filter för första order orsakar gradvis dämpning till hörn frekvensen. Därefter orsakar filtret exponentiell minskning. Filter med högre ordning (till exempel Butterworth och Chebyshev filter) har steeper lutningar efter hörn frekvensen. Filter med högre ordning dämpar värdena i stopband mycket snabbare och helt.
  • Bandstop-filter (kallas även ett band avvisande filter eller ett Hack -filter): har bara ett stopband. Du definierar stopband genom att ange två frekvenser: den höga frekvensen för gräns och låg gräns. Ett bandpass -filter har vanligt vis två stopbands: en på endera sidan av den önskade komponenten.
  • Krusning: en liten, oönskad variation som inträffar regelbundet. I Machine Learning kan du ange mängden krusning som ska tolereras som en del av parametrarna i IIR-filtrets Design.

Tips

Behöver du mer information? Om du inte har använt digital signal-bearbetning kan du läsa mer i Introduktion till digital signal bearbetning. Webbplatsen innehåller definitioner och användbara visuella hjälpmedel som förklarar grundläggande terminologi och begrepp.

Lista över moduler

Följande moduler ingår i kategorin data omvandling – filter :

Se även