您现在访问的是微软AZURE全球版技术文档网站,若需要访问由世纪互联运营的MICROSOFT AZURE中国区技术文档网站,请访问 https://docs.azure.cn.

GPU 优化虚拟机大小GPU optimized virtual machine sizes

GPU 优化 VM 大小是具有单个、多个或部分 GPU 的专用虚拟机。GPU optimized VM sizes are specialized virtual machines available with single, multiple, or fractional GPUs. 这些大小是针对计算密集型、图形密集型和可视化工作负荷设计的。These sizes are designed for compute-intensive, graphics-intensive, and visualization workloads. 本文介绍有关 GPU、vCPU、数据磁盘和 NIC 的数量和类型的信息。This article provides information about the number and type of GPUs, vCPUs, data disks, and NICs. 此分组中的每个大小还包括存储吞吐量及网络带宽。Storage throughput and network bandwidth are also included for each size in this grouping.

  • NCv3 系列NC T4_v3 系列大小针对计算密集型的 GPU 加速应用程序进行了优化。The NCv3-series and NC T4_v3-series sizes are optimized for compute-intensive GPU-accelerated applications. 一些示例包括基于 CUDA 和 OpenCL 的应用程序以及模拟、AI 和深度学习。Some examples are CUDA and OpenCL-based applications and simulations, AI, and Deep Learning. NC T4 v3 系列重点介绍了具有 NVIDIA Tesla T4 GPU 和 AMD EPYC2 罗马处理器的推理工作负荷。The NC T4 v3-series is focused on inference workloads featuring NVIDIA's Tesla T4 GPU and AMD EPYC2 Rome processor. NCv3 系列侧重于高性能计算和 AI 工作负载,其特点是 NVIDIA 的 Tesla V100 GPU。The NCv3-series is focused on high-performance computing and AI workloads featuring NVIDIA’s Tesla V100 GPU.

  • NDv2 系列的大小侧重于向上扩展和向外扩展深入学习培训应用程序。The NDv2-series size is focused on scale-up and scale-out deep learning training applications. NDv2 系列使用 Nvidia Volta V100 和 Intel 白金 8168 (Skylake) 处理器。The NDv2-series uses the Nvidia Volta V100 and the Intel Xeon Platinum 8168 (Skylake) processor.

  • NV 系列NVv3 系列 大小经过优化,适用于使用 OpenGL 和 DirectX 等框架的远程可视化、流式处理、游戏、编码和 VDI 方案。NV-series and NVv3-series sizes are optimized and designed for remote visualization, streaming, gaming, encoding, and VDI scenarios using frameworks such as OpenGL and DirectX. 这些 VM 由 NVIDIA Tesla M60 GPU 提供支持。These VMs are backed by the NVIDIA Tesla M60 GPU.

  • NVv4 系列 VM 大小经过优化,适用于 VDI 和远程可视化。NVv4-series VM sizes optimized and designed for VDI and remote visualization. 对于分区 Gpu,NVv4 为需要较小 GPU 资源的工作负荷提供适当的大小。With partitioned GPUs, NVv4 offers the right size for workloads requiring smaller GPU resources. 这些 Vm 由 AMD Radeon Instinct MI25 GPU 支持。These VMs are backed by the AMD Radeon Instinct MI25 GPU. NVv4 Vm 当前仅支持 Windows 来宾操作系统。NVv4 VMs currently support only Windows guest operating system.

支持的操作系统和驱动程序Supported operating systems and drivers

若要利用 Azure N 系列 Vm 的 GPU 功能,必须安装 NVIDIA 或 AMD GPU 驱动程序。To take advantage of the GPU capabilities of Azure N-series VMs, NVIDIA or AMD GPU drivers must be installed.

部署注意事项Deployment considerations

  • 有关 N 系列 VM 的可用性,请查看可用产品(按区域)For availability of N-series VMs, see Products available by region.

  • N 系列 VM 只能按 Resource Manager 部署模型部署。N-series VMs can only be deployed in the Resource Manager deployment model.

  • N 系列的 VM 在对其磁盘支持的 Azure 存储类型方面有所不同。N-series VMs differ in the type of Azure Storage they support for their disks. NC 和 NV VM 仅支持标准磁盘存储 (HDD) 所支持的 VM 磁盘。NC and NV VMs only support VM disks that are backed by Standard Disk Storage (HDD). NCv2、NCv3、ND、NDv2 和 NVv2 VM 仅支持高级磁盘存储 (SSD) 所支持的 VM 磁盘。NCv2, NCv3, ND, NDv2, and NVv2 VMs only support VM disks that are backed by Premium Disk Storage (SSD).

  • 如果需要部署的 N 系列 VM 较多,请考虑使用即用即付订阅或其他购买选项。If you want to deploy more than a few N-series VMs, consider a pay-as-you-go subscription or other purchase options. 如果使用的是 Azure 免费帐户,则仅可以使用有限数量的 Azure 计算核心。If you're using an Azure free account, you can use only a limited number of Azure compute cores.

  • 可能需要提高 Azure 订阅中的核心配额(按区域)以及单独针对 NC、NCv2、NCv3、ND、NDv2、NV 或 NVv2 核心的配额。You might need to increase the cores quota (per region) in your Azure subscription, and increase the separate quota for NC, NCv2, NCv3, ND, NDv2, NV, or NVv2 cores. 若要请求增加配额,可免费 建立联机客户支持请求To request a quota increase, open an online customer support request at no charge. 默认限制可能因订阅类别而异。Default limits may vary depending on your subscription category.

其他大小Other sizes

后续步骤Next steps

了解有关 Azure 计算单元 (ACU) 如何帮助跨 Azure SKU 比较计算性能的详细信息。Learn more about how Azure compute units (ACU) can help you compare compute performance across Azure SKUs.