Decimal.Ceiling(Decimal) Method
Definition
Returns the smallest integral value that is greater than or equal to the specified decimal number.
public:
static System::Decimal Ceiling(System::Decimal d);
public static decimal Ceiling (decimal d);
static member Ceiling : decimal -> decimal
Public Shared Function Ceiling (d As Decimal) As Decimal
Parameters
- d
- Decimal
A decimal number.
Returns
The smallest integral value that is greater than or equal to the d
parameter. Note that this method returns a Decimal instead of an integral type.
Examples
The following example illustrates the Ceiling method and contrasts it with the Floor method.
using System;
public class Example
{
public static void Main()
{
decimal[] values = {12.6m, 12.1m, 9.5m, 8.16m, .1m, -.1m, -1.1m,
-1.9m, -3.9m};
Console.WriteLine("{0,-8} {1,10} {2,10}\n",
"Value", "Ceiling", "Floor");
foreach (decimal value in values)
Console.WriteLine("{0,-8} {1,10} {2,10}", value,
Decimal.Ceiling(value), Decimal.Floor(value));
}
}
// The example displays the following output:
// Value Ceiling Floor
//
// 12.6 13 12
// 12.1 13 12
// 9.5 10 9
// 8.16 9 8
// 0.1 1 0
// -0.1 0 -1
// -1.1 -1 -2
// -1.9 -1 -2
// -3.9 -3 -4
Module Example
Public Sub Main()
Dim values() As Decimal = {12.6d, 12.1d, 9.5d, 8.16d, .1d, -.1d,
-1.1d, -1.9d, -3.9d}
Console.WriteLine("{0,-8} {1,10} {2,10}",
"Value", "Ceiling", "Floor")
Console.WriteLine()
For Each value As Decimal In values
Console.WriteLine("{0,-8} {1,10} {2,10}", value,
Decimal.Ceiling(value), Decimal.Floor(value))
Next
End Sub
End Module
' The example displays the following output:
' Value Ceiling Floor
'
' 12.6 13 12
' 12.1 13 12
' 9.5 10 9
' 8.16 9 8
' 0.1 1 0
' -0.1 0 -1
' -1.1 -1 -2
' -1.9 -1 -2
' -3.9 -3 -4
Remarks
The behavior of this method follows IEEE Standard 754, section 4. This kind of rounding is sometimes called rounding toward positive infinity. In other words, if d
is positive, the presence of any fractional component causes d
to be rounded to the next highest integer. If d
is negative, the rounding operation causes any fractional component of d
to be discarded. The operation of this method differs from the Floor method, which supports rounding toward negative infinity.