Folyamatok és tevékenységek a Azure Data Factory és Azure Synapse Analytics

A KÖVETKEZŐKRE VONATKOZIK: Azure Data Factory Azure Synapse Analytics

Ez a cikk segít megérteni a Azure Data Factory és a Azure Synapse Analytics folyamatait és tevékenységeit, és ezeket használva teljes adatvezérelt munkafolyamatokat hoz létre az adatátmozgatási és adatfeldolgozási forgatókönyvekhez.

Áttekintés

Egy Data Factory Synapse-munkaterület egy vagy több folyamatból is lehet. A folyamatok olyan tevékenységek logikus csoportosításai, amelyek együttesen vesznek részt egy feladat végrehajtásában. Például a folyamat tartalmazhat egy olyan tevékenységkészletet, amely naplóadatokat tölt be és töröl, majd egy leképezési adatfolyamot futtat a naplóadatok elemzéséhez. A folyamatok lehetővé teszik, hogy a tevékenységeket egy készletben kezelje, ne pedig külön-külön. Magát a folyamatot helyezheti üzembe és ütemezheti az önálló tevékenységek helyett.

A folyamat tevékenységei meghatározzák az adatokon végrehajtandó műveleteket. A másolási tevékenység használatával például átmásolhatja az adatokat a SQL Server egy Azure Blob-Storage. Ezután egy adatfolyam- vagy Databricks-jegyzetfüzet-tevékenység használatával feldolgozhatja és átalakíthatja az adatokat a blobtárolóból egy Azure Synapse Analytics-készletbe, amelyen üzletiintelligencia-jelentéskészítési megoldások épülnek.

Azure Data Factory és Azure Synapse Analytics tevékenységek három csoportba vannak csoportosítva: adatátmozgatási tevékenységek,adatátalakítási tevékenységek és vezérlési tevékenységek. Egy tevékenység nulla vagy több bemeneti adatkészletet is le tud készíteni, és egy vagy több kimeneti adatkészletet is elő tud készíteni. Az alábbi ábrán a folyamat, a tevékenység és az adatkészlet közötti kapcsolat látható:

Az adatkészlet, a tevékenység és a folyamat közötti kapcsolat

A bemeneti adatkészlet a folyamat egy tevékenységének bemenetét, a kimeneti adatkészlet pedig a tevékenység kimenetét jelöli. Az adatkészletek adatokat határoznak meg a különböző adattárakban, például táblákban, fájlokban, mappákban és dokumentumokban. Az adatkészlet létrehozását követően használhatja azt egy folyamat tevékenységei esetében. Az adatkészletek lehetnek például egy másolási tevékenység vagy egy HDInsightHive-tevékenység be- vagy kimeneti adatkészletei. Az adatkészletekről további információkat Az Azure Data Factory adatkészletei cikkben talál.

Adattovábbítási tevékenységek

A Data Factory másolási tevékenysége adatokat másol egy forrásadattárból egy fogadó adattárba. A Data Factory a jelen szakaszban található táblában felsorolt adattárakat támogatja. Az adatok bármilyen forrásból bármilyen fogadóba másolhatók. Az adattárra kattintva megtudhatja, hogy az adott tárolóba, illetve tárolóból hogyan másolhat adatokat.

Kategória Adattár Forrásként támogatott Fogadóként támogatott Az Azure IR által támogatott Helyi integrációs modul által támogatott
Azure Azure Blob Storage
  Az Azure Cognitive Search indexe
  Azure Cosmos DB (SQL API)
  MongoDB-hez készült Azure Cosmos DB API
  Azure Data Explorer
  1. generációs Azure Data Lake Storage
  Azure Data Lake Storage Gen2
  Azure Database for MariaDB
  Azure Database for MySQL
  Azure Database for PostgreSQL
  Azure Databricks Delta Lake
  Azure Files
  Azure SQL Database
  Felügyelt Azure SQL-példány
  Azure Synapse Analytics
  Azure Table storage
Adatbázis Amazon RDS for Oracle
  Amazon RDS for SQL Server
  Amazon Redshift
  DB2
  Drill
  Google BigQuery
  Greenplum
  HBase
  Hive
  Apache Impala
  Informix
  MariaDB
  Microsoft Access
  MySQL
  Netezza
  Oracle
  Phoenix
  PostgreSQL
  Presto
  SAP Business Warehouse via Open Hub
  SAP Business Warehouse via MDX
  SAP HANA
  SAP-tábla
  Snowflake
  Spark
  SQL Server
  Sybase
  Teradata
  Vertica
NoSQL Cassandra
  Couchbase (előzetes verzió)
  MongoDB
  MongoDB Atlas
Fájl Amazon S3
  Amazon S3-kompatibilis Storage
  Fájlrendszer
  FTP
  Google Cloud Storage
  HDFS
  Oracle Cloud Storage
  SFTP
Általános protokoll Általános HTTP
  Általános OData
  Általános ODBC
  Általános REST
Szolgáltatások és alkalmazások Amazon Marketplace Web Service
  Concur (előzetes verzió)
  Dataverse
  Dynamics 365
  Dynamics AX
  Dynamics CRM
  Google AdWords
  HubSpot
  Jira
  Magento (előzetes verzió)
  Marketo (előzetes verzió)
  Microsoft 365
  Oracle Eloqua (előzetes verzió)
  Oracle Responsys (előzetes verzió)
  Oracle Service Cloud (előzetes verzió)
  PayPal (előzetes verzió)
  QuickBooks (előzetes verzió)
  Salesforce
  Salesforce Service Cloud
  Salesforce Marketing Cloud
  SAP Cloud for Customer (C4C)
  SAP ECC
  ServiceNow
SharePoint Online-lista
  Shopify (előzetes verzió)
  Square (előzetes verzió)
  Webtábla (HTML-tábla)
  Xero
  Zoho (előzetes verzió)

Megjegyzés

Az előzetes verzió jelzéssel ellátott összekötőket kipróbálhatja, és visszajelzést küldhet róluk. Ha függőséget szeretne felvenni a megoldásában található előzetes verziójú összekötőkre, lépjen kapcsolatba az Azure-támogatással.

További információkat a Másolási tevékenység áttekintése cikkben talál.

Adatátalakítási tevékenységek

Azure Data Factory és Azure Synapse Analytics a következő átalakítási tevékenységeket támogatják, amelyek egyenként vagy egy másik tevékenységhez láncolva hozzáadhatóak.

Adatátalakítási tevékenység Számítási környezet
Adatfolyam Apache Spark által felügyelt fürtök Azure Data Factory
Azure-függvény Azure Functions
Hive HDInsight [Hadoop]
Pig HDInsight [Hadoop]
MapReduce HDInsight [Hadoop]
Hadoop Streaming HDInsight [Hadoop]
Spark HDInsight [Hadoop]
ML Studio (klasszikus) tevékenységei: Kötegelt végrehajtás és erőforrás frissítése Azure VM
Tárolt eljárás Azure SQL, Azure Synapse Analytics vagy SQL Server
U-SQL Azure Data Lake Analytics
Egyéni tevékenység Azure Batch
Databricks-jegyzetfüzet Azure Databricks
Databricks Jar-tevékenység Azure Databricks
Databricks Python-tevékenység Azure Databricks

További információkért tekintse meg az adatátalakítási tevékenységekről szóló cikket.

Vezérlésfolyam-tevékenységek

A támogatott átvitelvezérlési tevékenységek a következők:

Vezérlési tevékenység Description
Változó hozzáfűzése Adjon hozzá egy értéket egy meglévő tömbváltozóhoz.
Folyamat végrehajtása Execute Pipeline tevékenység egy Data Factory Synapse-folyamat meghívhat egy másik folyamatot.
Szűrő Szűrőkifejezés alkalmazása bemeneti tömbre
Mindegyikhez A ForEach tevékenység ismétlődő átvitelvezérlést határoz meg a folyamatban. Ez a tevékenység egy gyűjtemény megismétlésére, valamint egy megadott ciklustevékenység végrehajtására szolgál. E tevékenység ciklusos megvalósítása hasonló a Foreach ciklusos szerkezetéhez a programozási nyelvek esetében.
Metaadatok lekérte A GetMetadata tevékenység a metaadatok lekérésére használható egy Data Factory- vagy Synapse-folyamatban.
If Condition tevékenység Az If Condition tevékenység igaz vagy hamis értéket visszaadó feltételek alapján történő elágaztatásra használható. Az If Condition tevékenység ugyanazokat a funkciókat biztosítja, mint a programnyelvek if utasítása. Egy tevékenységkészletet értékel ki, amikor a feltétel kiértékelése értéket ad, és egy másik tevékenységkészletet, amikor a feltétel true kiértékelése a következőre történik: false.
Keresési tevékenység A Keresési tevékenység segítségével bármely külső forrásból kiolvashat vagy megkereshet egy rekordot, táblanevet vagy értéket. Erre a kimenetre a későbbi tevékenységek is hivatkozhatnak.
Változó beállítása Állítsa be egy meglévő változó értékét.
Until tevékenység A Do-Until ciklus megvalósítása hasonló a programozási nyelvek Do-Until ciklusos szerkezetéhez. Egy tevékenységkészletet futtat le ciklusosan addig, amíg a tevékenységhez rendelt feltétel igaz értéket nem ad vissza. Megadhat egy időtúllépési értéket a until tevékenységhez.
Érvényesítési tevékenység Győződjön meg arról, hogy a folyamat csak akkor folytatja a végrehajtást, ha létezik referencia-adatkészlet, megfelel egy megadott feltételnek, vagy időtúllépés történt.
Wait tevékenység Ha várakozási tevékenységet használ egy folyamatban, a folyamat a megadott ideig várakozik, mielőtt folytatná a további tevékenységek végrehajtását.
Webes tevékenység A webes tevékenység egy egyéni REST-végpont hívására használható egy folyamatból. Az adatkészleteket és a társított szolgáltatásokat továbbíthatja a tevékenység számára felhasználásra vagy elérés céljára.
Webhook tevékenység A webhooktevékenység használatával hívja meg a végpontot, és adja át a visszahívási URL-címet. A folyamatfutat megvárja, amíg a visszahívás meg lesz hívva, mielőtt továbblépne a következő tevékenységre.

A folyamat JSON-fájlja

Egy folyamat JSON-formátumban való meghatározása a következő módon történik:

{
    "name": "PipelineName",
    "properties":
    {
        "description": "pipeline description",
        "activities":
        [
        ],
        "parameters": {
        },
        "concurrency": <your max pipeline concurrency>,
        "annotations": [
        ]
    }
}
Címke Leírás Típus Kötelező
name A folyamat neve. Adjon meg egy, a folyamat által végrehajtandó műveletet jelölő nevet.
  • A karakterek maximális száma: 140
  • Betűvel, számmal vagy aláhúzásjellel _ () kell kezdődnie
  • A következő karakterek nem engedélyezettek: ".", "+", "?", "/", "<", ">","*"," %", " &",":", " "
Sztring Yes
leírás Adjon meg egy, az adott folyamat alkalmazását leíró szöveget. Sztring No
tevékenységek A tevékenységek szakaszon belül egy vagy több tevékenység is meghatározható. A tevékenységek JSON-elemeiről részletes információkat a Tevékenység JSON-fájlja szakaszban talál. Tömb Yes
parameters Az adott folyamat paraméterek szakaszában egy vagy több paraméter adható meg, így a folyamat rugalmasan újrafelhasználható. Lista No
Konkurencia A folyamat által egyidejűleg futtatott futtatás maximális száma. Alapértelmezés szerint nincs maximális érték. Ha eléri az egyidejűségi korlátot, a további folyamatfutatokat a korábbiak befejeződésig várólistára kerülnek Szám No
Széljegyzetek A folyamathoz társított címkék listája Tömb No

Tevékenység JSON-fájlja

A tevékenységek szakaszon belül egy vagy több tevékenység is meghatározható. A következő két fő tevékenységtípust különböztetjük meg: végrehajtási és vezérlési tevékenységek.

Végrehajtási tevékenységek

A végrehajtási tevékenységek közé az adatáthelyezési és az adatátalakítási tevékenységek tartoznak. Ezek a következő felső szintű struktúrával rendelkeznek:

{
    "name": "Execution Activity Name",
    "description": "description",
    "type": "<ActivityType>",
    "typeProperties":
    {
    },
    "linkedServiceName": "MyLinkedService",
    "policy":
    {
    },
    "dependsOn":
    {
    }
}

Az alábbi táblában a tevékenység JSON-definíciójában lévő tulajdonságok szerepelnek:

Címke Leírás Kötelező
name A tevékenység neve. Adjon meg egy, a tevékenység által végrehajtandó műveletet jelölő nevet.
  • A karakterek maximális száma: 55
  • Betűvel vagy aláhúzásjellel () kell _ kezdődnie
  • A következő karakterek nem engedélyezettek: ".", "+", "?", "/", "<", ">","*"," %", " &",":", " "
Yes
leírás Az adott tevékenységet vagy annak alkalmazását leíró szöveg Yes
típus A tevékenység típusa. A különböző típusú tevékenységekért tekintse meg az Adatátmozgatási tevékenységek,az Adatátalakítási tevékenységek és a Vezérlési tevékenységek szakaszt. Yes
linkedServiceName A tevékenység által használt társított szolgáltatás neve.

Egy adott tevékenység megkövetelheti annak a társított szolgáltatásnak a megadását, amely a szükséges számítási környezethez kapcsolódik.
Igen a HDInsight-tevékenység, ML Studio (klasszikus) kötegelt pontozási tevékenység, tárolt eljárási tevékenység esetén.

Minden egyéb esetében: nem
typeProperties A typeProperties szakasz tulajdonságai az egyes tevékenységtípusoktól függenek. Az adott tevékenység típustulajdonságainak megtekintéséhez kattintson az előző szakaszban szereplő tevékenységhivatkozásokra. No
szabályzat Olyan szabályzatok, amelyek az adott tevékenység futásidejű viselkedését befolyásolják. Ez a tulajdonság időtúllépést és újrapróbálkozási viselkedést is tartalmaz. Ha nincs megadva, a rendszer az alapértelmezett értékeket használja. További információkat a Tevékenységszabályzat szakaszban talál. No
dependsOn Ez a tulajdonság a tevékenységfüggőségek, valamint az egymást követő tevékenységek függőségeinek meghatározására szolgál. További információért lásd: Tevékenységfüggőség No

Tevékenységszabályzat

A szabályzatok az adott tevékenység futásidejű viselkedését befolyásolják, beállíthatósági lehetőségeket biztosítva. A tevékenységszabályzatok kizárólag végrehajtási tevékenységek esetében állnak rendelkezésre.

Tevékenységszabályzat JSON-definíciója

{
    "name": "MyPipelineName",
    "properties": {
      "activities": [
        {
          "name": "MyCopyBlobtoSqlActivity",
          "type": "Copy",
          "typeProperties": {
            ...
          },
         "policy": {
            "timeout": "00:10:00",
            "retry": 1,
            "retryIntervalInSeconds": 60,
            "secureOutput": true
         }
        }
      ],
        "parameters": {
           ...
        }
    }
}
JSON-név Description Megengedett értékek Kötelező
timeout Megadja a futtatni kívánt tevékenység időtúllépését. Időtartomány Nem. Az alapértelmezett időtúllépés 7 nap.
retry Újrapróbálkozási kísérletek maximális száma Egész szám Nem. Az alapértelmezett érték: 0
retryIntervalInSeconds Az újrapróbálkozási kísérletek közötti késleltetés, másodpercben Egész szám Nem. Az alapértelmezett érték 30 másodperc
secureOutput Ha true (igaz) érték van beállítva, a tevékenység kimenete biztonságosnak minősül, és nem lesz naplózva a monitorozáshoz. Logikai Nem. Az alapértelmezett érték a false (hamis).

Vezérlési tevékenység

A vezérlési tevékenységek az alábbi felső szintű struktúrával rendelkeznek:

{
    "name": "Control Activity Name",
    "description": "description",
    "type": "<ActivityType>",
    "typeProperties":
    {
    },
    "dependsOn":
    {
    }
}
Címke Leírás Kötelező
name A tevékenység neve. Adjon meg egy, a tevékenység által végrehajtandó műveletet jelölő nevet.
  • A karakterek maximális száma: 55
  • Betűszámmal vagy aláhúzásjellel () kell _ kezdődnie
  • A következő karakterek nem engedélyezettek: ".", "+", "?", "/", "<", ">","*"," %", " &",":", " "
Yes
    leírás Az adott tevékenységet vagy annak alkalmazását leíró szöveg Yes
    típus A tevékenység típusa. A különböző tevékenységtípusokkal kapcsolatban lásd az adattovábbítási tevékenységeket, az adat-átalakítási tevékenységeket és a vezérlési tevékenységeket. Yes
    typeProperties A typeProperties szakasz tulajdonságai az egyes tevékenységtípusoktól függenek. Az adott tevékenység típustulajdonságainak megtekintéséhez kattintson az előző szakaszban szereplő tevékenységhivatkozásokra. No
    dependsOn Ez a tulajdonság a tevékenységfüggőség, valamint az egymást követő tevékenységek függőségeinek meghatározására szolgál. További információ: tevékenységfüggőség. No

    Tevékenységfüggőség

    A tevékenységfüggőség azt határozza meg, hogy a további tevékenységek hogyan függenek a korábbi tevékenységektől, meghatározva azt a feltételt, hogy folytatni kell-e a következő feladat végrehajtását. Egy adott tevékenység egy vagy több korábbi, eltérő függőségi feltétellel rendelkező tevékenységtől is függhet.

    A különböző függőségi feltételek a következők: Sikeres, Sikertelen, Kihagyva, Befejezve.

    Ha például egy folyamat A tevékenység -> B tevékenység formában valósul meg, a következő forgatókönyvek lehetségesek:

    • A B tevékenység sikeres függőségi feltétellel rendelkezik az A tevékenység esetében: a B tevékenység csak akkor fut le, ha az A tevékenység végállapota sikeres
    • A B tevékenység sikertelen függőségi feltétellel rendelkezik az A tevékenység esetében: a B tevékenység csak akkor fut le, ha az A tevékenység végállapota sikertelen
    • A B tevékenység befejezve függőségi feltétellel rendelkezik az A tevékenység esetében: a B tevékenység akkor fut le, ha az A tevékenység végállapota sikeres vagy sikertelen
    • A B tevékenység ki van hagyva az A tevékenység függőségi feltételével: A B tevékenység akkor fut le, ha az A tevékenység végleges állapota kihagyva. Kihagyva állapot következik be az X tevékenység -> Y tevékenység -> Z tevékenység forgatókönyvben, ahol minden egyes tevékenység csak akkor fut le, ha az előző tevékenység sikeresen lefutott. Ha az X tevékenység meghiúsul, akkor az Y tevékenység "Kihagyva" állapotú, mert soha nem fut le. Hasonlóképpen a Z tevékenység "Kihagyva" állapotú.

    Példa: a 2. tevékenység az 1. tevékenység sikerességétől függ

    {
        "name": "PipelineName",
        "properties":
        {
            "description": "pipeline description",
            "activities": [
             {
                "name": "MyFirstActivity",
                "type": "Copy",
                "typeProperties": {
                },
                "linkedServiceName": {
                }
            },
            {
                "name": "MySecondActivity",
                "type": "Copy",
                "typeProperties": {
                },
                "linkedServiceName": {
                },
                "dependsOn": [
                {
                    "activity": "MyFirstActivity",
                    "dependencyConditions": [
                        "Succeeded"
                    ]
                }
              ]
            }
          ],
          "parameters": {
           }
        }
    }
    
    

    Minta másolási folyamat

    Az alábbi mintafolyamat tevékenységek szakaszában egyetlen Másolás típusú tevékenység található. Ebben a példában a másolási tevékenység adatokat másol egy Azure Blob Storage-ból egy Azure SQL Database.

    {
      "name": "CopyPipeline",
      "properties": {
        "description": "Copy data from a blob to Azure SQL table",
        "activities": [
          {
            "name": "CopyFromBlobToSQL",
            "type": "Copy",
            "inputs": [
              {
                "name": "InputDataset"
              }
            ],
            "outputs": [
              {
                "name": "OutputDataset"
              }
            ],
            "typeProperties": {
              "source": {
                "type": "BlobSource"
              },
              "sink": {
                "type": "SqlSink",
                "writeBatchSize": 10000,
                "writeBatchTimeout": "60:00:00"
              }
            },
            "policy": {
              "retry": 2,
              "timeout": "01:00:00"
            }
          }
        ]
      }
    }
    

    Vegye figyelembe a következő szempontokat:

    • A tevékenységek szakaszban csak egyetlen tevékenység van, amelynek a típusa****Copy értékre van beállítva.
    • A tevékenység bemenetének beállítása InputDataset, a kimeneté pedig OutputDataset. Az adatkészletek JSON-fáljban történő meghatározását lásd az Adatkészletek cikket.
    • A typeProperties szakaszban forrástípusként a BlobSource, fogadótípusként pedig az SqlSink érték van megadva. Az adattovábbítási tevékenységek szakaszban kattintson a forrásként vagy fogadóként használni kívánt adattárra, hogy további információkhoz jusson az adott adattár esetén a kifelé vagy befelé irányuló adatáthelyezési lehetőségekről.

    A folyamat létrehozásának teljes bemutatójért lásd: Rövid útmutató:Data Factory.

    Minta átalakítási folyamat

    Az alábbi mintafolyamat tevékenységek szakaszában egyetlen HDInsightHive típusú tevékenység található. Ebben a mintában a HDInsight Hive-tevékenység egy Azure blobtárolóból származó adatokat alakít át egy Hive-szkriptfájl Azure HDInsight Hadoop-fürtön történő futtatásával.

    {
        "name": "TransformPipeline",
        "properties": {
            "description": "My first Azure Data Factory pipeline",
            "activities": [
                {
                    "type": "HDInsightHive",
                    "typeProperties": {
                        "scriptPath": "adfgetstarted/script/partitionweblogs.hql",
                        "scriptLinkedService": "AzureStorageLinkedService",
                        "defines": {
                            "inputtable": "wasb://adfgetstarted@<storageaccountname>.blob.core.windows.net/inputdata",
                            "partitionedtable": "wasb://adfgetstarted@<storageaccountname>.blob.core.windows.net/partitioneddata"
                        }
                    },
                    "inputs": [
                        {
                            "name": "AzureBlobInput"
                        }
                    ],
                    "outputs": [
                        {
                            "name": "AzureBlobOutput"
                        }
                    ],
                    "policy": {
                        "retry": 3
                    },
                    "name": "RunSampleHiveActivity",
                    "linkedServiceName": "HDInsightOnDemandLinkedService"
                }
            ]
        }
    }
    

    Vegye figyelembe a következő szempontokat:

    • A tevékenységek szakaszban csak egyetlen tevékenység van, amelynek a típusa****HDInsightHive értékre van beállítva.
    • A partitionweblogs.hql Hive-szkriptfájlt a rendszer az (AzureStorageLinkedService nevű scriptLinkedService által megadott) Azure Storage-fiókban és a tároló script mappájában adfgetstarted tárolja.
    • A defines szakasz meghatározza a futásidő beállításait, amelyek Hive konfigurációs értékekként (például ${hiveconf:inputtable}, ${hiveconf:partitionedtable}) lesznek átadva a Hive-parancsfájlnak.

    A typeProperties szakasz eltérő az egyes átalakítási tevékenységek esetében. Ahhoz, hogy megismerkedhessen az egyes átalakítási tevékenységek által támogatott típustulajdonságokkal, kattintson az adott átalakítási tevékenységre az Adatátalakítási tevékenységek szakaszban.

    E folyamat létrehozásának teljes leírását lásd: Oktatóanyag: adatátalakítás a Spark használatával.

    Több tevékenység egy adott folyamatban

    Az előző két mintában a folyamatok csak egyetlen tevékenységet tartalmaztak. Egy folyamathoz azonban több tevékenység is tartozhat. Ha az adott folyamatban több tevékenység is található, és az egymást követő tevékenységek nem függnek az azokat megelőző tevékenységektől, akkor ezek párhuzamosan is futtathatók.

    A tevékenységfüggőség segítségével összefűzhet két tevékenységet. Ez a fajta függőség azt határozza meg, hogy az egymást követő tevékenységek milyen függőségi viszonyban vannak a megelőző tevékenységekkel, meghatározva azt a feltételt, amelytől a következő feladat végrehajtása függ. Egy adott tevékenység egy vagy több korábbi, eltérő függőségi feltétellel rendelkező tevékenységtől is függhet.

    Folyamatok ütemezése

    A folyamatok ütemezése eseményindítókkal történik. Az eseményindítóknak különböző típusai vannak (Ütemező eseményindító, amely lehetővé teszi a folyamatok időpont szerinti aktiválását időpont szerint, valamint a manuális eseményindító, amely igény szerint indítja el a folyamatok aktiválását). További információ az eseményindítókról: Folyamat-végrehajtás és eseményindítók.

    Ahhoz, hogy az eseményindító kiváltsa egy folyamat indítását, az eseményindító meghatározásába bele kell foglalni az adott folyamat referenciáját. A folyamatok és az eseményindítók n-m kapcsolattal rendelkeznek. Egyetlen folyamatot több eseményindító is indíthat, és ugyanaz az eseményindító indíthat több folyamatot is. Ha az eseményindító meghatározása megtörtént, el kell indítania azt, hogy az képes legyen az adott folyamat indítására. További információ az eseményindítókról: Folyamat-végrehajtás és eseményindítók.

    Tegyük fel például, hogy van egy "A eseményindító" ütemező eseményindítója, amelyről elindítom a "MyCopyPipeline" folyamatot. Az eseményindítót az alábbi példában látható módon definiálhatja:

    Az A eseményindító meghatározása

    {
      "name": "TriggerA",
      "properties": {
        "type": "ScheduleTrigger",
        "typeProperties": {
          ...
          }
        },
        "pipeline": {
          "pipelineReference": {
            "type": "PipelineReference",
            "referenceName": "MyCopyPipeline"
          },
          "parameters": {
            "copySourceName": "FileSource"
          }
        }
      }
    }
    

    Következő lépések

    A folyamatok tevékenységekkel együtt történő létrehozásáról részletes útmutatást a következő oktatóanyagokban talál:

    CI/CD (folyamatos integráció és teljesítés) megvalósítása a Azure Data Factory