Learn how to use PREDICT functionality in serverless Apache Spark pools in Azure Synapse Analytics for score prediction. You can use a trained model registered in Azure Machine Learning (AML) or in the default Azure Data Lake Storage (ADLS) in your Synapse workspace.
PREDICT in a Synapse PySpark notebook provides you the capability to score machine learning models using the SQL language, user defined functions (UDF), or Transformers. With PREDICT, you can bring your existing machine learning models trained outside Synapse and registered in Azure Data Lake Storage Gen2 or Azure Machine Learning, to score historical data within the secure boundaries of Azure Synapse Analytics. The PREDICT function takes a model and data as inputs. This feature eliminates the step of moving valuable data outside of Synapse for scoring. The goal is to empower model consumers to easily infer machine learning models in Synapse as well as collaborate seamlessly with model producers working with the right framework for their task.
Make sure all prerequisites are in place before following these steps for using PREDICT.
Import libraries: Import the following libraries to use PREDICT in spark session.
#Import libraries
from pyspark.sql.functions import col, pandas_udf,udf,lit
from azureml.core import Workspace
from azureml.core.authentication import ServicePrincipalAuthentication
import azure.synapse.ml.predict as pcontext
import azure.synapse.ml.predict.utils._logger as synapse_predict_logger
Set parameters using variables: Synapse ADLS data path and model URI need to be set using input variables. You also need to define runtime which is "mlflow" and the data type of model output return. Please note that all data types which are supported in PySpark are supported through PREDICT also.
Note
Before running this script, update it with the URI for ADLS Gen2 data file along with model output return data type and ADLS/AML URI for the model file.
#Set input data path
DATA_FILE = "abfss://<filesystemname>@<account name>.dfs.core.windows.net/<file path>"
#Set model URI
#Set AML URI, if trained model is registered in AML
AML_MODEL_URI = "<aml model uri>" #In URI ":x" signifies model version in AML. You can choose which model version you want to run. If ":x" is not provided then by default latest version will be picked.
#Set ADLS URI, if trained model is uploaded in ADLS
ADLS_MODEL_URI = "abfss://<filesystemname>@<account name>.dfs.core.windows.net/<model mlflow folder path>"
#Define model return type
RETURN_TYPES = "<data_type>" # for ex: int, float etc. PySpark data types are supported
#Define model runtime. This supports only mlflow
RUNTIME = "mlflow"
Ways to authenticate AML workspace: If the model is stored in the default ADLS account of Synapse workspace, then you do not need any further authentication setup. If the model is registered in Azure Machine Learning, then you can choose either of the following two supported ways of authentication.
Note
Update tenant, client, subscription, resource group, AML workspace and linked service details in this script before running it.
(Recommended) Through linked service: You can use linked service to authenticate to AML workspace. Linked service can use "service principal" or Synapse workspace's "Managed Service Identity (MSI)" for authentication. "Service principal" or "Managed Service Identity (MSI)" must have "Contributor" access to the AML workspace.
#AML workspace authentication using linked service
from notebookutils.mssparkutils import azureML
ws = azureML.getWorkspace("<linked_service_name>") # "<linked_service_name>" is the linked service name, not AML workspace name. Also, linked service supports MSI and service principal both
Through service principal: Though not recommended, you can use service principal client ID and secret directly to authenticate to AML workspace. Providing the service principal password directly poses some security risk, so we suggest using a linked service where possible. Service principal must have "Contributor" access to the AML workspace.
#AML workspace authentication using service principal
AZURE_TENANT_ID = "<tenant_id>"
AZURE_CLIENT_ID = "<client_id>"
AZURE_CLIENT_SECRET = "<client_secret>"
AML_SUBSCRIPTION_ID = "<subscription_id>"
AML_RESOURCE_GROUP = "<resource_group_name>"
AML_WORKSPACE_NAME = "<aml_workspace_name>"
svc_pr = ServicePrincipalAuthentication(
tenant_id=AZURE_TENANT_ID,
service_principal_id=AZURE_CLIENT_ID,
service_principal_password=AZURE_CLIENT_SECRET
)
ws = Workspace(
workspace_name = AML_WORKSPACE_NAME,
subscription_id = AML_SUBSCRIPTION_ID,
resource_group = AML_RESOURCE_GROUP,
auth=svc_pr
)
Enable PREDICT in spark session: Set the spark configuration spark.synapse.ml.predict.enabled
to true
to enable the library.
#Enable SynapseML predict
spark.conf.set("spark.synapse.ml.predict.enabled","true")
Bind model in spark session: Bind model with required inputs so that the model can be referred in the spark session. Also define alias so that you can use same alias in the PREDICT call.
Note
Update model alias and model uri in this script before running it.
#Bind model within Spark session
model = pcontext.bind_model(
return_types=RETURN_TYPES,
runtime=RUNTIME,
model_alias="<random_alias_name>", #This alias will be used in PREDICT call to refer this model
model_uri=ADLS_MODEL_URI, #In case of AML, it will be AML_MODEL_URI
aml_workspace=ws #This is only for AML. In case of ADLS, this parameter can be removed
).register()
Read data from ADLS: Read data from ADLS. Create spark dataframe and a view on top of data frame.
Note
Update view name in this script before running it.
#Read data from ADLS
df = spark.read \
.format("csv") \
.option("header", "true") \
.csv(DATA_FILE,
inferSchema=True)
df.createOrReplaceTempView('<view_name>')
Generate score using PREDICT: You can call PREDICT three ways, using Spark SQL API, using User define function (UDF), and using Transformer API. Following are examples.
Note
Update the model alias name, view name, and comma separated model input column name in this script before running it. Comma separated model input columns are the same as those used while training the model.
#Call PREDICT using Spark SQL API
predictions = spark.sql(
"""
SELECT PREDICT('<random_alias_name>',
<comma_separated_model_input_column_name>) AS predict
FROM <view_name>
"""
).show()
#Call PREDICT using user defined function (UDF)
df = df[<comma_separated_model_input_column_name>] # for ex. df["empid","empname"]
df.withColumn("PREDICT",model.udf(lit("<random_alias_name>"),*df.columns)).show()
#Call PREDICT using Transformer API
columns = [<comma_separated_model_input_column_name>] # for ex. df["empid","empname"]
tranformer = model.create_transformer().setInputCols(columns).setOutputCol("PREDICT")
tranformer.transform(df).show()
Import libraries and read the training dataset from ADLS.
# Import libraries and read training dataset from ADLS
import fsspec
import pandas
from fsspec.core import split_protocol
adls_account_name = 'xyz' #Provide exact ADLS account name
adls_account_key = 'xyz' #Provide exact ADLS account key
fsspec_handle = fsspec.open('abfs[s]://<container>/<path-to-file>', account_name=adls_account_name, account_key=adls_account_key)
with fsspec_handle.open() as f:
train_df = pandas.read_csv(f)
Train model and generate mlflow artifacts.
# Train model and generate mlflow artifacts
import os
import shutil
import mlflow
import json
from mlflow.utils import model_utils
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
class LinearRegressionModel():
_ARGS_FILENAME = 'args.json'
FEATURES_KEY = 'features'
TARGETS_KEY = 'targets'
TARGETS_PRED_KEY = 'targets_pred'
def __init__(self, fit_intercept, nb_input_features=9, nb_output_features=1):
self.fit_intercept = fit_intercept
self.nb_input_features = nb_input_features
self.nb_output_features = nb_output_features
def get_args(self):
args = {
'nb_input_features': self.nb_input_features,
'nb_output_features': self.nb_output_features,
'fit_intercept': self.fit_intercept
}
return args
def create_model(self):
self.model = LinearRegression(fit_intercept=self.fit_intercept)
def train(self, dataset):
features = np.stack([sample for sample in iter(
dataset[LinearRegressionModel.FEATURES_KEY])], axis=0)
targets = np.stack([sample for sample in iter(
dataset[LinearRegressionModel.TARGETS_KEY])], axis=0)
self.model.fit(features, targets)
def predict(self, dataset):
features = np.stack([sample for sample in iter(
dataset[LinearRegressionModel.FEATURES_KEY])], axis=0)
targets_pred = self.model.predict(features)
return targets_pred
def save(self, path):
if os.path.exists(path):
shutil.rmtree(path)
# save the sklearn model with mlflow
mlflow.sklearn.save_model(self.model, path)
# save args
self._save_args(path)
def _save_args(self, path):
args_filename = os.path.join(path, LinearRegressionModel._ARGS_FILENAME)
with open(args_filename, 'w') as f:
args = self.get_args()
json.dump(args, f)
def train(train_df, output_model_path):
print(f"Start to train LinearRegressionModel.")
# Initialize input dataset
dataset = train_df.to_numpy()
datasets = {}
datasets['targets'] = dataset[:, -1]
datasets['features'] = dataset[:, :9]
# Initialize model class obj
model_class = LinearRegressionModel(fit_intercept=10)
with mlflow.start_run(nested=True) as run:
model_class.create_model()
model_class.train(datasets)
model_class.save(output_model_path)
print(model_class.predict(datasets))
train(train_df, './artifacts/output')
Store model MLFLOW artifacts in ADLS or register in AML.
# Store model MLFLOW artifacts in ADLS
STORAGE_PATH = 'abfs[s]://<container>/<path-to-store-folder>'
protocol, _ = split_protocol(STORAGE_PATH)
print (protocol)
storage_options = {
'account_name': adls_account_name,
'account_key': adls_account_key
}
fs = fsspec.filesystem(protocol, **storage_options)
fs.put(
'./artifacts/output',
STORAGE_PATH,
recursive=True, overwrite=True)
# Register model MLFLOW artifacts in AML
from azureml.core import Workspace, Model
from azureml.core.authentication import ServicePrincipalAuthentication
from notebookutils.mssparkutils import azureML
AZURE_TENANT_ID = "xyz"
AZURE_CLIENT_ID = "xyz"
AZURE_CLIENT_SECRET = "xyz"
AML_SUBSCRIPTION_ID = "xyz"
AML_RESOURCE_GROUP = "xyz"
AML_WORKSPACE_NAME = "xyz"
#AML workspace authentication using linked service
ws = azureML.getWorkspace("<linked_service_name>") # "<linked_service_name>" is the linked service name, not AML workspace name. Also, linked service supports MSI and service principal both
model = Model.register(
model_path="./artifacts/output",
model_name="xyz",
workspace=ws,
)
Set required parameters using variables.
# If using ADLS uploaded model
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, pandas_udf,udf,lit
import azure.synapse.ml.predict as pcontext
import azure.synapse.ml.predict.utils._logger as synapse_predict_logger
DATA_FILE = "abfss://xyz@xyz.dfs.core.windows.net/xyz.csv"
ADLS_MODEL_URI_SKLEARN = "abfss://xyz@xyz.dfs.core.windows.net/mlflow/sklearn/ e2e_linear_regression/"
RETURN_TYPES = "INT"
RUNTIME = "mlflow"
# If using AML registered model
from pyspark.sql.functions import col, pandas_udf,udf,lit
from azureml.core import Workspace
from azureml.core.authentication import ServicePrincipalAuthentication
import azure.synapse.ml.predict as pcontext
import azure.synapse.ml.predict.utils._logger as synapse_predict_logger
DATA_FILE = "abfss://xyz@xyz.dfs.core.windows.net/xyz.csv"
AML_MODEL_URI_SKLEARN = "aml://xyz"
RETURN_TYPES = "INT"
RUNTIME = "mlflow"
Enable SynapseML PREDICT functionality in spark session.
spark.conf.set("spark.synapse.ml.predict.enabled","true")
Bind model in spark session.
# If using ADLS uploaded model
model = pcontext.bind_model(
return_types=RETURN_TYPES,
runtime=RUNTIME,
model_alias="sklearn_linear_regression",
model_uri=ADLS_MODEL_URI_SKLEARN,
).register()
# If using AML registered model
model = pcontext.bind_model(
return_types=RETURN_TYPES,
runtime=RUNTIME,
model_alias="sklearn_linear_regression",
model_uri=AML_MODEL_URI_SKLEARN,
aml_workspace=ws
).register()
Load test data from ADLS.
# Load data from ADLS
df = spark.read \
.format("csv") \
.option("header", "true") \
.csv(DATA_FILE,
inferSchema=True)
df = df.select(df.columns[:9])
df.createOrReplaceTempView('data')
df.show(10)
Call PREDICT to generate the score.
# Call PREDICT
predictions = spark.sql(
"""
SELECT PREDICT('sklearn_linear_regression', *) AS predict FROM data
"""
).show()